IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.06251.html
   My bibliography  Save this paper

AI for Investment: A Platform Disruption

Author

Listed:
  • Mohammad Rasouli
  • Ravi Chiruvolu
  • Ali Risheh

Abstract

With the investment landscape becoming more competitive, efficiently scaling deal sourcing and improving deal insights have become a dominant strategy for funds. While funds are already spending significant efforts on these two tasks, they cannot be scaled with traditional approaches; hence, there is a surge in automating them. Many third party software providers have emerged recently to address this need with productivity solutions, but they fail due to a lack of personalization for the fund, privacy constraints, and natural limits of software use cases. Therefore, most major funds and many smaller funds have started developing their in-house AI platforms: a game changer for the industry. These platforms grow smarter by direct interactions with the fund and can be used to provide personalized use cases. Recent developments in large language models, e.g. ChatGPT, have provided an opportunity for other funds to also develop their own AI platforms. While not having an AI platform now is not a competitive disadvantage, it will be in two years. Funds require a practical plan and corresponding risk assessments for such AI platforms.

Suggested Citation

  • Mohammad Rasouli & Ravi Chiruvolu & Ali Risheh, 2023. "AI for Investment: A Platform Disruption," Papers 2311.06251, arXiv.org.
  • Handle: RePEc:arx:papers:2311.06251
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.06251
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.06251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.