IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.09273.html
   My bibliography  Save this paper

Uncovering Market Disorder and Liquidity Trends Detection

Author

Listed:
  • Etienne Chevalier
  • Yadh Hafsi
  • Vathana Ly Vath

Abstract

The primary objective of this paper is to conceive and develop a new methodology to detect notable changes in liquidity within an order-driven market. We study a market liquidity model which allows us to dynamically quantify the level of liquidity of a traded asset using its limit order book data. The proposed metric holds potential for enhancing the aggressiveness of optimal execution algorithms, minimizing market impact and transaction costs, and serving as a reliable indicator of market liquidity for market makers. As part of our approach, we employ Marked Hawkes processes to model trades-through which constitute our liquidity proxy. Subsequently, our focus lies in accurately identifying the moment when a significant increase or decrease in its intensity takes place. We consider the minimax quickest detection problem of unobservable changes in the intensity of a doubly-stochastic Poisson process. The goal is to develop a stopping rule that minimizes the robust Lorden criterion, measured in terms of the number of events until detection, for both worst-case delay and false alarm constraint. We prove our procedure's optimality in the case of a Cox process with simultaneous jumps, while considering a finite time horizon. Finally, this novel approach is empirically validated by means of real market data analyses.

Suggested Citation

  • Etienne Chevalier & Yadh Hafsi & Vathana Ly Vath, 2023. "Uncovering Market Disorder and Liquidity Trends Detection," Papers 2310.09273, arXiv.org.
  • Handle: RePEc:arx:papers:2310.09273
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.09273
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. E. Bacry & K. Dayri & J. F. Muzy, 2011. "Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data," Papers 1112.1838, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    2. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    3. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.09273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.