IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.06844.html
   My bibliography  Save this paper

Exploiting Unfair Advantages: Investigating Opportunistic Trading in the NFT Market

Author

Listed:
  • Priyanka Bose
  • Dipanjan Das
  • Fabio Gritti
  • Nicola Ruaro
  • Christopher Kruegel
  • Giovanni Vigna

Abstract

As cryptocurrency evolved, new financial instruments, such as lending and borrowing protocols, currency exchanges, fungible and non-fungible tokens (NFT), staking and mining protocols have emerged. A financial ecosystem built on top of a blockchain is supposed to be fair and transparent for each participating actor. Yet, there are sophisticated actors who turn their domain knowledge and market inefficiencies to their strategic advantage; thus extracting value from trades not accessible to others. This situation is further exacerbated by the fact that blockchain-based markets and decentralized finance (DeFi) instruments are mostly unregulated. Though a large body of work has already studied the unfairness of different aspects of DeFi and cryptocurrency trading, the economic intricacies of non-fungible token (NFT) trades necessitate further analysis and academic scrutiny. The trading volume of NFTs has skyrocketed in recent years. A single NFT trade worth over a million US dollars, or marketplaces making billions in revenue is not uncommon nowadays. While previous research indicated the presence of wrongdoings in the NFT market, to our knowledge, we are the first to study predatory trading practices, what we call opportunistic trading, in depth. Opportunistic traders are sophisticated actors who employ automated, high-frequency NFT trading strategies, which, oftentimes, are malicious, deceptive, or, at the very least, unfair. Such attackers weaponize their advanced technical knowledge and superior understanding of DeFi protocols to disrupt trades of unsuspecting users, and collect profits from economic situations that are inaccessible to ordinary users, in a "supposedly" fair market. In this paper, we explore three such broad classes of opportunistic strategies aiming to realize three distinct trading objectives, viz., acquire, instant profit generation, and loss minimization.

Suggested Citation

  • Priyanka Bose & Dipanjan Das & Fabio Gritti & Nicola Ruaro & Christopher Kruegel & Giovanni Vigna, 2023. "Exploiting Unfair Advantages: Investigating Opportunistic Trading in the NFT Market," Papers 2310.06844, arXiv.org.
  • Handle: RePEc:arx:papers:2310.06844
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.06844
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Derek Liu & Francesco Piccoli & Katie Chen & Adrina Tang & Victor Fang, 2023. "NFT Wash Trading Detection," Papers 2305.01543, arXiv.org.
    2. Gandal, Neil & Hamrick, JT & Moore, Tyler & Oberman, Tali, 2018. "Price manipulation in the Bitcoin ecosystem," Journal of Monetary Economics, Elsevier, vol. 95(C), pages 86-96.
    3. Serneels, Sven, 2023. "Detecting wash trading for nonfungible tokens," Finance Research Letters, Elsevier, vol. 52(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Hornuf & Paul P. Momtaz & Rachel J. Nam & Ye Yuan, 2023. "Cybercrime on the Ethereum Blockchain," CESifo Working Paper Series 10598, CESifo.
    2. Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
    3. Hanna Halaburda & Guillaume Haeringer & Joshua Gans & Neil Gandal, 2022. "The Microeconomics of Cryptocurrencies," Journal of Economic Literature, American Economic Association, vol. 60(3), pages 971-1013, September.
    4. Corbet, Shaen & Cumming, Douglas J. & Lucey, Brian M. & Peat, Maurice & Vigne, Samuel A., 2020. "The destabilising effects of cryptocurrency cybercriminality," Economics Letters, Elsevier, vol. 191(C).
    5. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    6. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    7. Ashwath Komath, 2022. "Bancor Comes of Age: A Case for an Indian Bitcoin Reserve," India Quarterly: A Journal of International Affairs, , vol. 78(1), pages 121-142, March.
    8. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    9. Tsang, Kwok Ping & Yang, Zichao, 2022. "Do connections pay off in the bitcoin market?," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 1-18.
    10. Yannis Bakos & Hanna Halaburda, 2022. "Overcoming the Coordination Problem in New Marketplaces via Cryptographic Tokens," Information Systems Research, INFORMS, vol. 33(4), pages 1368-1385, December.
    11. Gandal, Neil & Hamrick, JT & Rouhi, Farhang & Mukherjee, Arghya & Feder, Amir & Moore, Tyler & Vasek, Marie, 2018. "The Economics of Cryptocurrency Pump and Dump Schemes," CEPR Discussion Papers 13404, C.E.P.R. Discussion Papers.
    12. Alexandre Bovet & Carlo Campajola & Jorge F. Lazo & Francesco Mottes & Iacopo Pozzana & Valerio Restocchi & Pietro Saggese & Nicol'o Vallarano & Tiziano Squartini & Claudio J. Tessone, 2018. "Network-based indicators of Bitcoin bubbles," Papers 1805.04460, arXiv.org.
    13. Miklesh Prasad Yadav & Atul Kumar & Vidhi Tyagi, 2023. "Adaptive Market Hypothesis and Cointegration: An Evidence of the Cryptocurrency Market," Contemporary Studies in Economic and Financial Analysis, in: Smart Analytics, Artificial Intelligence and Sustainable Performance Management in a Global Digitalised Economy, volume 110, pages 27-43, Emerald Group Publishing Limited.
    14. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    15. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    16. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2020. "Non-linearities, cyber attacks and cryptocurrencies," Finance Research Letters, Elsevier, vol. 32(C).
    17. Binh Nguyen Quang & Thai‐Ha Le & Canh Nguyen Phuc, 2022. "Influences of uncertainty on the returns and liquidity of cryptocurrencies: Evidence from a portfolio approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2497-2513, April.
    18. Corbet, Shaen & Hou, Yang & Hu, Yang & Oxley, Les, 2020. "The influence of the COVID-19 pandemic on asset-price discovery: Testing the case of Chinese informational asymmetry," International Review of Financial Analysis, Elsevier, vol. 72(C).
    19. Cahill, Daniel & G. Baur, Dirk & (Frank) Liu, Zhangxin & W. Yang, Joey, 2020. "I am a blockchain too: How does the market respond to companies’ interest in blockchain?," Journal of Banking & Finance, Elsevier, vol. 113(C).
    20. Anil Donmez & Alexander Karaivanov, 2022. "Transaction fee economics in the Ethereum blockchain," Economic Inquiry, Western Economic Association International, vol. 60(1), pages 265-292, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.06844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.