IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.05682.html
   My bibliography  Save this paper

A compendium of data sources for data science, machine learning, and artificial intelligence

Author

Listed:
  • Paul Bilokon
  • Oleksandr Bilokon
  • Saeed Amen

Abstract

Recent advances in data science, machine learning, and artificial intelligence, such as the emergence of large language models, are leading to an increasing demand for data that can be processed by such models. While data sources are application-specific, and it is impossible to produce an exhaustive list of such data sources, it seems that a comprehensive, rather than complete, list would still benefit data scientists and machine learning experts of all levels of seniority. The goal of this publication is to provide just such an (inevitably incomplete) list -- or compendium -- of data sources across multiple areas of applications, including finance and economics, legal (laws and regulations), life sciences (medicine and drug discovery), news sentiment and social media, retail and ecommerce, satellite imagery, and shipping and logistics, and sports.

Suggested Citation

  • Paul Bilokon & Oleksandr Bilokon & Saeed Amen, 2023. "A compendium of data sources for data science, machine learning, and artificial intelligence," Papers 2309.05682, arXiv.org.
  • Handle: RePEc:arx:papers:2309.05682
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.05682
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.05682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.