IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.10823.html
   My bibliography  Save this paper

Simulation Experiments as a Causal Problem

Author

Listed:
  • Tyrel Stokes
  • Ian Shrier
  • Russell Steele

Abstract

Simulation methods are among the most ubiquitous methodological tools in statistical science. In particular, statisticians often is simulation to explore properties of statistical functionals in models for which developed statistical theory is insufficient or to assess finite sample properties of theoretical results. We show that the design of simulation experiments can be viewed from the perspective of causal intervention on a data generating mechanism. We then demonstrate the use of causal tools and frameworks in this context. Our perspective is agnostic to the particular domain of the simulation experiment which increases the potential impact of our proposed approach. In this paper, we consider two illustrative examples. First, we re-examine a predictive machine learning example from a popular textbook designed to assess the relationship between mean function complexity and the mean-squared error. Second, we discuss a traditional causal inference method problem, simulating the effect of unmeasured confounding on estimation, specifically to illustrate bias amplification. In both cases, applying causal principles and using graphical models with parameters and distributions as nodes in the spirit of influence diagrams can 1) make precise which estimand the simulation targets , 2) suggest modifications to better attain the simulation goals, and 3) provide scaffolding to discuss performance criteria for a particular simulation design.

Suggested Citation

  • Tyrel Stokes & Ian Shrier & Russell Steele, 2023. "Simulation Experiments as a Causal Problem," Papers 2308.10823, arXiv.org.
  • Handle: RePEc:arx:papers:2308.10823
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.10823
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Cinelli & Chad Hazlett, 2020. "Making sense of sensitivity: extending omitted variable bias," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 39-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamberova, Natalia, 2021. "The puzzling politics of R&D: Signaling competence through risky projects," Journal of Comparative Economics, Elsevier, vol. 49(3), pages 801-818.
    2. Christoph Dworschak, 2024. "Bias mitigation in empirical peace and conflict studies: A short primer on posttreatment variables," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(3), pages 462-476, May.
    3. Johnen, Constantin & Musshoff, Oliver & Parlasca, Martin C., 2022. "Mobile Money Adoption in Kenya: The Role of Mobile Money Agents," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322294, Agricultural and Applied Economics Association.
    4. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    5. Indra de Soysa, 2022. "Economic freedom vs. egalitarianism: An empirical test of weak & strong sustainability, 1970–2017," Kyklos, Wiley Blackwell, vol. 75(2), pages 236-268, May.
    6. Garz, Marcel & Maaß, Sabrina, 2021. "Cartels in the European Union, antitrust action, and public attention," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 533-547.
    7. Gebka, Bartosz & Kanungo, Rama Prasad & Wildman, John, 2024. "The transition from COVID-19 infections to deaths: Do governance quality and corruption affect it?," Journal of Policy Modeling, Elsevier, vol. 46(2), pages 235-253.
    8. Belén González & Richard Traunmüller, 2024. "The political consequences of wartime sexual violence: Evidence from a list experiment," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(6), pages 1035-1050, November.
    9. Colnet Bénédicte & Josse Julie & Varoquaux Gaël & Scornet Erwan, 2022. "Causal effect on a target population: A sensitivity analysis to handle missing covariates," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 372-414, January.
    10. Arteaga, Fernando & Desierto, Desiree & Koyama, Mark, 2024. "Shipwrecked by rents," Journal of Development Economics, Elsevier, vol. 168(C).
    11. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    12. Jean Philippe Décieux & Alexandra Mergener, 2021. "German Labor Emigration in Times of Technological Change: Occupational Characteristics and Geographical Patterns," Sustainability, MDPI, vol. 13(3), pages 1-18, January.
    13. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    14. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    15. Jamie Bologna Pavlik & Maria Tackett, 2022. "The Effect of Presidential Particularism on Economic Well-Being: A County-Level Analysis," Public Finance Review, , vol. 50(2), pages 135-168, March.
    16. Wang-Ly, Nathan & Newell, Ben R., 2022. "Allowing early access to retirement savings: Lessons from Australia," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 716-733.
    17. Shakil, Golam Saroare & Marsh, Thomas L., 2021. "One Instrument to Rule Them All?," 2021 Annual Meeting, August 1-3, Austin, Texas 314047, Agricultural and Applied Economics Association.
    18. Ahrens, Achim & Casalis, Marine & Hangartner, Dominik & Sánchez, Rodrigo, 2024. "Cash-based interventions improve multidimensional integration outcomes of Venezuelan immigrants," World Development, Elsevier, vol. 181(C).
    19. Schuessler, Julian, 2024. "Causal analysis with observational data," OSF Preprints wam94, Center for Open Science.
    20. Xueli Wang & Yen Lee & Xiwei Zhu & Ayse Okur Ozdemir, 2022. "Exploring the Relationship Between Community College Students’ Exposure to Math Contextualization and Educational Outcomes," Research in Higher Education, Springer;Association for Institutional Research, vol. 63(2), pages 309-336, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.10823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.