IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.13686.html
   My bibliography  Save this paper

Characteristics and Predictive Modeling of Short-term Impacts of Hurricanes on the US Employment

Author

Listed:
  • Gan Zhang
  • Wenjun Zhu

Abstract

The physical and economic damages of hurricanes can acutely affect employment and the well-being of employees. However, a comprehensive understanding of these impacts remains elusive as many studies focused on narrow subsets of regions or hurricanes. Here we present an open-source dataset that serves interdisciplinary research on hurricane impacts on US employment. Compared to past domain-specific efforts, this dataset has greater spatial-temporal granularity and variable coverage. To demonstrate potential applications of this dataset, we focus on the short-term employment disruptions related to hurricanes during 1990-2020. The observed county-level employment changes in the initial month are small on average, though large employment losses (>30%) can occur after extreme storms. The overall small changes partly result from compensation among different employment sectors, which may obscure large, concentrated employment losses after hurricanes. Additional econometric analyses concur on the post-storm employment losses in hospitality and leisure but disagree on employment changes in the other industries. The dataset also enables data-driven analyses that highlight vulnerabilities such as pronounced employment losses related to Puerto Rico and rainy hurricanes. Furthermore, predictive modeling of short-term employment changes shows promising performance for service-providing industries and high-impact storms. In the examined cases, the nonlinear Random Forests model greatly outperforms the multiple linear regression model. The nonlinear model also suggests that more severe hurricane hazards projected by physical models may cause more extreme losses in US service-providing employment. Finally, we share our dataset and analytical code to facilitate the study and modeling of hurricane impacts in a changing climate.

Suggested Citation

  • Gan Zhang & Wenjun Zhu, 2023. "Characteristics and Predictive Modeling of Short-term Impacts of Hurricanes on the US Employment," Papers 2307.13686, arXiv.org, revised May 2024.
  • Handle: RePEc:arx:papers:2307.13686
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.13686
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.13686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.