IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.17095.html
   My bibliography  Save this paper

Decomposing cryptocurrency high-frequency price dynamics into recurring and noisy components

Author

Listed:
  • Marcin Wk{a}torek
  • Maria Skupie'n
  • Jaros{l}aw Kwapie'n
  • Stanis{l}aw Dro.zd.z

Abstract

This paper investigates the temporal patterns of activity in the cryptocurrency market with a focus on Bitcoin, Ethereum, Dogecoin, and WINkLink from January 2020 to December 2022. Market activity measures - logarithmic returns, volume, and transaction number, sampled every 10 seconds, were divided into intraday and intraweek periods and then further decomposed into recurring and noise components via correlation matrix formalism. The key findings include the distinctive market behavior from traditional stock markets due to the nonexistence of trade opening and closing. This was manifest in three enhanced-activity phases aligning with Asian, European, and U.S. trading sessions. An intriguing pattern of activity surge in 15-minute intervals, particularly at full hours, was also noticed, implying the potential role of algorithmic trading. Most notably, recurring bursts of activity in bitcoin and ether were identified to coincide with the release times of significant U.S. macroeconomic reports such as Nonfarm payrolls, Consumer Price Index data, and Federal Reserve statements. The most correlated daily patterns of activity occurred in 2022, possibly reflecting the documented correlations with U.S. stock indices in the same period. Factors that are external to the inner market dynamics are found to be responsible for the repeatable components of the market dynamics, while the internal factors appear to be substantially random, which manifests itself in a good agreement between the empirical eigenvalue distributions in their bulk and the random matrix theory predictions expressed by the Marchenko-Pastur distribution. The findings reported support the growing integration of cryptocurrencies into the global financial markets.

Suggested Citation

  • Marcin Wk{a}torek & Maria Skupie'n & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2023. "Decomposing cryptocurrency high-frequency price dynamics into recurring and noisy components," Papers 2306.17095, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2306.17095
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.17095
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.17095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.