IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.16525.html
   My bibliography  Save this paper

Divergence Based Quadrangle and Applications

Author

Listed:
  • Anton Malandii
  • Siddhartha Gupte
  • Cheng Peng
  • Stan Uryasev

Abstract

This paper introduces a novel framework for assessing risk and decision-making in the presence of uncertainty, the \emph{$\varphi$-Divergence Quadrangle}. This approach expands upon the traditional Risk Quadrangle, a model that quantifies uncertainty through four key components: \emph{risk, deviation, regret}, and \emph{error}. The $\varphi$-Divergence Quadrangle incorporates the $\varphi$-divergence as a measure of the difference between probability distributions, thereby providing a more nuanced understanding of risk. Importantly, the $\varphi$-Divergence Quadrangle is closely connected with the distributionally robust optimization based on the $\varphi$-divergence approach through the duality theory of convex functionals. To illustrate its practicality and versatility, several examples of the $\varphi$-Divergence Quadrangle are provided, including the Quantile Quadrangle. The final portion of the paper outlines a case study implementing regression with the Entropic Value-at-Risk Quadrangle. The proposed $\varphi$-Divergence Quadrangle presents a refined methodology for understanding and managing risk, contributing to the ongoing development of risk assessment and management strategies.

Suggested Citation

  • Anton Malandii & Siddhartha Gupte & Cheng Peng & Stan Uryasev, 2023. "Divergence Based Quadrangle and Applications," Papers 2306.16525, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2306.16525
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.16525
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.16525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.