IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.12863.html
   My bibliography  Save this paper

Price elasticity of electricity demand: Using instrumental variable regressions to address endogeneity and autocorrelation of high-frequency time series

Author

Listed:
  • Silvana Tiedemann

    (Hertie School, Centre for Sustainability, Germany)

  • Raffaele Sgarlato

    (Hertie School, Centre for Sustainability, Germany)

  • Lion Hirth

    (Hertie School, Centre for Sustainability, Germany
    Neon Neue Energie\"okonomik GmbH, Germany)

Abstract

This paper examines empirical methods for estimating the response of aggregated electricity demand to high-frequency price signals, the short-term elasticity of electricity demand. We investigate how the endogeneity of prices and the autocorrelation of the time series, which are particularly pronounced at hourly granularity, affect and distort common estimators. After developing a controlled test environment with synthetic data that replicate key statistical properties of electricity demand, we show that not only the ordinary least square (OLS) estimator is inconsistent (due to simultaneity), but so is a regular instrumental variable (IV) regression (due to autocorrelation). Using wind as an instrument, as it is commonly done, may result in an estimate of the demand elasticity that is inflated by an order of magnitude. We visualize the reason for the Thams bias using causal graphs and show that its magnitude depends on the autocorrelation of both the instrument, and the dependent variable. We further incorporate and adapt two extensions of the IV estimation, conditional IV and nuisance IV, which have recently been proposed by Thams et al. (2022). We show that these extensions can identify the true short-term elasticity in a synthetic setting and are thus particularly promising for future empirical research in this field.

Suggested Citation

  • Silvana Tiedemann & Raffaele Sgarlato & Lion Hirth, 2023. "Price elasticity of electricity demand: Using instrumental variable regressions to address endogeneity and autocorrelation of high-frequency time series," Papers 2306.12863, arXiv.org.
  • Handle: RePEc:arx:papers:2306.12863
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.12863
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Fabra & David Rapson & Mar Reguant & Jingyuan Wang, 2021. "Estimating the Elasticity to Real-Time Pricing: Evidence from the Spanish Electricity Market," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 425-429, May.
    2. Damien, Paul & Fuentes-García, Ruth & Mena, Ramsés H. & Zarnikau, Jay, 2019. "Impacts of day-ahead versus real-time market prices on wholesale electricity demand in Texas," Energy Economics, Elsevier, vol. 81(C), pages 259-272.
    3. Derya Eryilmaz, Timothy M. Smith, and Frances R. Homans, 2017. "Price Responsiveness in Electricity Markets: Implications for Demand Response in the Midwest," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Tim Schittekatte & Dharik S. Mallapragada & Paul L. Joskow & Richard Schmalensee, 2022. "Electricity Retail Rate Design in a Decarbonized Economy: An Analysis of Time-Of-Use and Critical Peak Pricing," NBER Working Papers 30560, National Bureau of Economic Research, Inc.
    5. Zhou, Yang & Ma, Rong & Su, Yun & Wu, Libo, 2019. "Too big to change: How heterogeneous firms respond to time-of-use electricity price," China Economic Review, Elsevier, vol. 58(C).
    6. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    7. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    2. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    3. Enrich, Jacint & Li, Ruoyi & Mizrahi, Alejandro & Reguant, Mar, 2024. "Measuring the impact of time-of-use pricing on electricity consumption: Evidence from Spain," Journal of Environmental Economics and Management, Elsevier, vol. 123(C).
    4. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    5. Hirth, Lion & Khanna, Tarun M. & Ruhnau, Oliver, 2024. "How aggregate electricity demand responds to hourly wholesale price fluctuations," Energy Economics, Elsevier, vol. 135(C).
    6. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    7. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Berkowitz, J. & Birgean, I. & Kilian, L., 1999. "On the Finite-Sample Accuracy of Nonparametric Resampling Algorithms for Economic Time Series," Papers 99-01, Michigan - Center for Research on Economic & Social Theory.
    9. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    10. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    11. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    12. Gruener Hans Peter & Hayo Bernd & Hefeker Carsten, 2009. "Unions, Wage Setting and Monetary Policy Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-25, October.
    13. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    14. Arturo Estrella & Anthony P. Rodrigues, 1998. "Consistent covariance matrix estimation in probit models with autocorrelated errors," Staff Reports 39, Federal Reserve Bank of New York.
    15. PAUL CASHIN & C. JOHN McDERMOTT, 1998. "Are Australia's Current Account Deficits Excessive?," The Economic Record, The Economic Society of Australia, vol. 74(227), pages 346-361, December.
    16. Wagner, Martin & Wied, Dominik, 2014. "Monitoring Stationarity and Cointegration," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100386, Verein für Socialpolitik / German Economic Association.
    17. Paul Cashin & C. McDermott, 2002. "Terms of Trade Shocks and the Current Account: Evidence from Five Industrial Countries," Open Economies Review, Springer, vol. 13(3), pages 219-235, July.
    18. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    19. Julia Reynolds & Leopold Sögner & Martin Wagner, 2021. "Deviations from Triangular Arbitrage Parity in Foreign Exchange and Bitcoin Markets," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(2), pages 105-146, June.
    20. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.12863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.