IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.07928.html
   My bibliography  Save this paper

Optimizing Investment Strategies with Lazy Factor and Probability Weighting: A Price Portfolio Forecasting and Mean-Variance Model with Transaction Costs Approach

Author

Listed:
  • Shuo Han
  • Yinan Chen
  • Jiacheng Liu

Abstract

Market traders often engage in the frequent transaction of volatile assets to optimize their total return. In this study, we introduce a novel investment strategy model, anchored on the 'lazy factor.' Our approach bifurcates into a Price Portfolio Forecasting Model and a Mean-Variance Model with Transaction Costs, utilizing probability weights as the coefficients of laziness factors. The Price Portfolio Forecasting Model, leveraging the EXPMA Mean Method, plots the long-term price trend line and forecasts future price movements, incorporating the tangent slope and rate of change. For short-term investments, we apply the ARIMA Model to predict ensuing prices. The Mean-Variance Model with Transaction Costs employs the Monte Carlo Method to formulate the feasible region. To strike an optimal balance between risk and return, equal probability weights are incorporated as coefficients of the laziness factor. To assess the efficacy of this combined strategy, we executed extensive experiments on a specified dataset. Our findings underscore the model's adaptability and generalizability, indicating its potential to transform investment strategies.

Suggested Citation

  • Shuo Han & Yinan Chen & Jiacheng Liu, 2023. "Optimizing Investment Strategies with Lazy Factor and Probability Weighting: A Price Portfolio Forecasting and Mean-Variance Model with Transaction Costs Approach," Papers 2306.07928, arXiv.org.
  • Handle: RePEc:arx:papers:2306.07928
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.07928
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William Lefebvre & Gregoire Loeper & Huy^en Pham, 2020. "Mean-variance portfolio selection with tracking error penalization," Papers 2009.08214, arXiv.org, revised Sep 2020.
    2. Xidonas, Panos & Mavrotas, George & Hassapis, Christis & Zopounidis, Constantin, 2017. "Robust multiobjective portfolio optimization: A minimax regret approach," European Journal of Operational Research, Elsevier, vol. 262(1), pages 299-305.
    3. Willliam Lefebvre & Gregoire Loeper & Huyên Pham, 2020. "Mean-variance portfolio selection with tracking error penalization," Working Papers hal-02941289, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren'e Aid & Ofelia Bonesini & Giorgia Callegaro & Luciano Campi, 2021. "A McKean-Vlasov game of commodity production, consumption and trading," Papers 2111.04391, arXiv.org.
    2. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Papers 2112.11059, arXiv.org, revised Nov 2022.
    3. Apichat Chaweewanchon & Rujira Chaysiri, 2022. "Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning," IJFS, MDPI, vol. 10(3), pages 1-19, August.
    4. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Working Papers hal-03498263, HAL.
    5. Weng Hoe Lam & Weng Siew Lam & Kah Fai Liew & Pei Fun Lee, 2023. "Decision Analysis on the Financial Performance of Companies Using Integrated Entropy-Fuzzy TOPSIS Model," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    6. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    7. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    8. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    9. Frank Phillipson & Harshil Singh Bhatia, 2020. "Portfolio Optimisation Using the D-Wave Quantum Annealer," Papers 2012.01121, arXiv.org.
    10. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    11. Fakhar, Majid & Mahyarinia, Mohammad Reza & Zafarani, Jafar, 2018. "On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 265(1), pages 39-48.
    12. Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2020. "On the construction of a feasible range of multidimensional poverty under benchmark weight uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 415-427.
    13. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    14. Xidonas, Panos & Doukas, Haris & Hassapis, Christis, 2021. "Grouped data, investment committees & multicriteria portfolio selection," Journal of Business Research, Elsevier, vol. 129(C), pages 205-222.
    15. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    16. Nomeda Dobrovolskienė & Anastasija Pozniak & Manuela Tvaronavičienė, 2021. "Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    17. Chan, Chi Kin & Zhou, Yan & Wong, Kar Hung, 2019. "An equilibrium model of the supply chain network under multi-attribute behaviors analysis," European Journal of Operational Research, Elsevier, vol. 275(2), pages 514-535.
    18. Tommi Ekholm & Erin Baker, 2022. "Multiple Beliefs, Dominance and Dynamic Consistency," Management Science, INFORMS, vol. 68(1), pages 529-540, January.
    19. Maximilien Germain & Huyên Pham & Xavier Warin, 2022. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Post-Print hal-03498263, HAL.
    20. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.07928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.