IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.03237.html
   My bibliography  Save this paper

Gauge symmetries and the Higgs mechanism in Quantum Finance

Author

Listed:
  • Ivan Arraut

Abstract

By using the Hamiltonian formulation, we demonstrate that the Merton-Garman equation emerges naturally from the Black-Scholes equation after imposing invariance (symmetry) under local (gauge) transformations over changes in the stock price. This is the case because imposing gauge symmetry implies the appearance of an additional field, which corresponds to the stochastic volatility. The gauge symmetry then imposes some constraints over the free-parameters of the Merton-Garman Hamiltonian. Finally, we analyze how the stochastic volatility gets massive dynamically via Higgs mechanism.

Suggested Citation

  • Ivan Arraut, 2023. "Gauge symmetries and the Higgs mechanism in Quantum Finance," Papers 2306.03237, arXiv.org.
  • Handle: RePEc:arx:papers:2306.03237
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.03237
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Arraut, 2024. "On the Local equivalence of the Black Scholes and the Merton Garman equations," Papers 2410.00925, arXiv.org.
    2. Haoran Zheng & Bo Dong, 2024. "Quantum Temporal Winds: Turbulence in Financial Markets," Mathematics, MDPI, vol. 12(10), pages 1-28, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.03237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.