IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.16117.html
   My bibliography  Save this paper

Feature Engineering Methods on Multivariate Time-Series Data for Financial Data Science Competitions

Author

Listed:
  • Thomas Wong
  • Mauricio Barahona

Abstract

This paper is a work in progress. We are looking for collaborators to provide us financial datasets in Equity/Futures market to conduct more bench-marking studies. The authors have papers employing similar methods applied on the Numerai dataset, which is freely available but obfuscated. We apply different feature engineering methods for time-series to US market price data. The predictive power of models are tested against Numerai-Signals targets.

Suggested Citation

  • Thomas Wong & Mauricio Barahona, 2023. "Feature Engineering Methods on Multivariate Time-Series Data for Financial Data Science Competitions," Papers 2303.16117, arXiv.org, revised Apr 2023.
  • Handle: RePEc:arx:papers:2303.16117
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.16117
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.16117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.