IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.08615.html
   My bibliography  Save this paper

Characteristic Function of the Tsallis $q$-Gaussian and Its Applications in Measurement and Metrology

Author

Listed:
  • Viktor Witkovsk'y

Abstract

The Tsallis $q$-Gaussian distribution is a powerful generalization of the standard Gaussian distribution and is commonly used in various fields, including non-extensive statistical mechanics, financial markets and image processing. It belongs to the $q$-distribution family, which is characterized by a non-additive entropy. Due to their versatility and practicality, $q$-Gaussians are a natural choice for modeling input quantities in measurement models. This paper presents the characteristic function of a linear combination of independent $q$-Gaussian random variables and proposes a numerical method for its inversion. The proposed technique makes it possible to determine the exact probability distribution of the output quantity in linear measurement models, with the input quantities modeled as independent $q$-Gaussian random variables. It provides an alternative computational procedure to the Monte Carlo method for uncertainty analysis through the propagation of distributions.

Suggested Citation

  • Viktor Witkovsk'y, 2023. "Characteristic Function of the Tsallis $q$-Gaussian and Its Applications in Measurement and Metrology," Papers 2303.08615, arXiv.org, revised May 2023.
  • Handle: RePEc:arx:papers:2303.08615
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.08615
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.08615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.