IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.05666.html
   My bibliography  Save this paper

Research on CPI Prediction Based on Natural Language Processing

Author

Listed:
  • Xiaobin Tang
  • Nuo Lei

Abstract

In the past, the seed keywords for CPI prediction were often selected based on empirical summaries of research and literature studies, which were prone to select omitted and invalid variables. In this paper, we design a keyword expansion technique for CPI prediction based on the cutting-edge NLP model, PANGU. We improve the CPI prediction ability using the corresponding web search index. Compared with the unsupervised pre-training and supervised downstream fine-tuning natural language processing models such as BERT and NEZHA, the PANGU model can be expanded to obtain more reliable CPI-generated keywords by its excellent zero-sample learning capability without the limitation of the downstream fine-tuning data set. Finally, this paper empirically tests the keyword prediction ability obtained by this keyword expansion method with historical CPI data.

Suggested Citation

  • Xiaobin Tang & Nuo Lei, 2023. "Research on CPI Prediction Based on Natural Language Processing," Papers 2303.05666, arXiv.org.
  • Handle: RePEc:arx:papers:2303.05666
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.05666
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.05666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.