IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.12670.html
   My bibliography  Save this paper

Personalized Pricing with Invalid Instrumental Variables: Identification, Estimation, and Policy Learning

Author

Listed:
  • Rui Miao
  • Zhengling Qi
  • Cong Shi
  • Lin Lin

Abstract

Pricing based on individual customer characteristics is widely used to maximize sellers' revenues. This work studies offline personalized pricing under endogeneity using an instrumental variable approach. Standard instrumental variable methods in causal inference/econometrics either focus on a discrete treatment space or require the exclusion restriction of instruments from having a direct effect on the outcome, which limits their applicability in personalized pricing. In this paper, we propose a new policy learning method for Personalized pRicing using Invalid iNsTrumental variables (PRINT) for continuous treatment that allow direct effects on the outcome. Specifically, relying on the structural models of revenue and price, we establish the identifiability condition of an optimal pricing strategy under endogeneity with the help of invalid instrumental variables. Based on this new identification, which leads to solving conditional moment restrictions with generalized residual functions, we construct an adversarial min-max estimator and learn an optimal pricing strategy. Furthermore, we establish an asymptotic regret bound to find an optimal pricing strategy. Finally, we demonstrate the effectiveness of the proposed method via extensive simulation studies as well as a real data application from an US online auto loan company.

Suggested Citation

  • Rui Miao & Zhengling Qi & Cong Shi & Lin Lin, 2023. "Personalized Pricing with Invalid Instrumental Variables: Identification, Estimation, and Policy Learning," Papers 2302.12670, arXiv.org.
  • Handle: RePEc:arx:papers:2302.12670
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.12670
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.12670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.