IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.10490.html
   My bibliography  Save this paper

Creating Disasters: Recession Forecasting with GAN-Generated Synthetic Time Series Data

Author

Listed:
  • Sam Dannels

Abstract

A common problem when forecasting rare events, such as recessions, is limited data availability. Recent advancements in deep learning and generative adversarial networks (GANs) make it possible to produce high-fidelity synthetic data in large quantities. This paper uses a model called DoppelGANger, a GAN tailored to producing synthetic time series data, to generate synthetic Treasury yield time series and associated recession indicators. It is then shown that short-range forecasting performance for Treasury yields is improved for models trained on synthetic data relative to models trained only on real data. Finally, synthetic recession conditions are produced and used to train classification models to predict the probability of a future recession. It is shown that training models on synthetic recessions can improve a model's ability to predict future recessions over a model trained only on real data.

Suggested Citation

  • Sam Dannels, 2023. "Creating Disasters: Recession Forecasting with GAN-Generated Synthetic Time Series Data," Papers 2302.10490, arXiv.org.
  • Handle: RePEc:arx:papers:2302.10490
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.10490
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.10490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.