IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.08911.html
   My bibliography  Save this paper

DSE Stock Price Prediction using Hidden Markov Model

Author

Listed:
  • Raihan Tanvir
  • Md Tanvir Rouf Shawon
  • Md. Golam Rabiul Alam

Abstract

Stock market forecasting is a classic problem that has been thoroughly investigated using machine learning and artificial neural network based tools and techniques. Interesting aspects of this problem include its time reliance as well as its volatility and other complex relationships. To combine them, hidden markov models (HMMs) have been utilized to anticipate the price of stocks. We demonstrated the Maximum A Posteriori (MAP) HMM method for predicting stock prices for the next day based on previous data. An HMM is trained by analyzing the fractional change in the stock price as well as the intraday high and low values. It is then utilized to produce a MAP estimate across all possible stock prices for the next day. The approach demonstrated in our work is quite generalized and can be used to predict the stock price for any company, given that the HMM is trained on the dataset of that company's stocks dataset. We evaluated the accuracy of our models using some extensively used accuracy metrics for regression problems and came up with a satisfactory outcome.

Suggested Citation

  • Raihan Tanvir & Md Tanvir Rouf Shawon & Md. Golam Rabiul Alam, 2023. "DSE Stock Price Prediction using Hidden Markov Model," Papers 2302.08911, arXiv.org.
  • Handle: RePEc:arx:papers:2302.08911
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.08911
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David A. Swanson, 2015. "On the Relationship among Values of the Same Summary Measure of Error when it is used across Multiple Characteristics at the Same Point in Time: An Examination of MALPE and MAPE," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hüseyin İlker Erçen & Hüseyin Özdeşer & Turgut Türsoy, 2022. "The Impact of Macroeconomic Sustainability on Exchange Rate: Hybrid Machine-Learning Approach," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    2. Jack Baker & David Swanson & Jeff Tayman, 2021. "The Accuracy of Hamilton–Perry Population Projections for Census Tracts in the United States," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 40(6), pages 1341-1354, December.
    3. Jeff Tayman & David A. Swanson & Jack Baker, 2021. "Using Synthetic Adjustments and Controlling to Improve County Population Forecasts from the Hamilton–Perry Method," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 40(6), pages 1355-1383, December.
    4. Jeff Tayman & David A. Swanson, 2017. "Using modified cohort change and child-woman ratios in the Hamilton–Perry forecasting method," Journal of Population Research, Springer, vol. 34(3), pages 209-231, September.
    5. Felix Lokin & Fenghui Yu, 2024. "Fill Probabilities in a Limit Order Book with State-Dependent Stochastic Order Flows," Papers 2403.02572, arXiv.org.
    6. Rosa Francesca De Masi & Gerardo Maria Mauro & Silvia Ruggiero & Francesca Villano, 2023. "Predicting Building Energy Demand and Retrofit Potentials Using New Climatic Stress Indices and Curves," Energies, MDPI, vol. 16(16), pages 1-23, August.
    7. Manshadi, Zahra Dehghan & Parivar, Parastoo & Sotoudeh, Ahad & Morovati Sharifabadi, Ali, 2024. "Modeling urban growth effects on carrying capacity in arid and semi-arid regions using system dynamics," Ecological Modelling, Elsevier, vol. 487(C).
    8. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).
    9. V S Sanjay Kumar & Shabana Yoonus & M V L R Anjaneyulu, 2024. "Development of a Land Price Model for a Medium Sized Indian City," International Real Estate Review, Global Social Science Institute, vol. 27(2), pages 275-302.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.08911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.