IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.05089.html
   My bibliography  Save this paper

On semiparametric estimation of the intercept of the sample selection model: a kernel approach

Author

Listed:
  • Zhewen Pan

Abstract

This paper presents a new perspective on the identification at infinity for the intercept of the sample selection model as identification at the boundary via a transformation of the selection index. This perspective suggests generalizations of estimation at infinity to kernel regression estimation at the boundary and further to local linear estimation at the boundary. The proposed kernel-type estimators with an estimated transformation are proven to be nonparametric-rate consistent and asymptotically normal under mild regularity conditions. A fully data-driven method of selecting the optimal bandwidths for the estimators is developed. The Monte Carlo simulation shows the desirable finite sample properties of the proposed estimators and bandwidth selection procedures.

Suggested Citation

  • Zhewen Pan, 2023. "On semiparametric estimation of the intercept of the sample selection model: a kernel approach," Papers 2302.05089, arXiv.org.
  • Handle: RePEc:arx:papers:2302.05089
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.05089
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan Shen, 2013. "Determinants of Health Care Decisions: Insurance, Utilization, and Expenditures," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 142-153, March.
    2. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    3. Chen, Songnian & Zhou, Yahong, 2010. "Semiparametric and nonparametric estimation of sample selection models under symmetry," Journal of Econometrics, Elsevier, vol. 157(1), pages 143-150, July.
    4. Schafgans, Marcia M. A., 2000. "Gender wage differences in Malaysia: parametric and semiparametric estimation," Journal of Development Economics, Elsevier, vol. 63(2), pages 351-378, December.
    5. Gronau, Reuben, 1974. "Wage Comparisons-A Selectivity Bias," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1119-1143, Nov.-Dec..
    6. Chen, Songnian & Lee, Lung-Fei, 1998. "Efficient Semiparametric Scoring Estimation Of Sample Selection Models," Econometric Theory, Cambridge University Press, vol. 14(4), pages 423-462, August.
    7. Schafgans, Marcia M.A. & Zinde-Walsh, Victoria, 2002. "On Intercept Estimation In The Sample Selection Model," Econometric Theory, Cambridge University Press, vol. 18(1), pages 40-50, February.
    8. Katrin Hussinger, 2008. "R&D and subsidies at the firm level: an application of parametric and semiparametric two-step selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 729-747.
    9. Klein, Roger & Shen, Chan & Vella, Francis, 2015. "Estimation of marginal effects in semiparametric selection models with binary outcomes," Journal of Econometrics, Elsevier, vol. 185(1), pages 82-94.
    10. Andrew Gelman & Guido Imbens, 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 447-456, July.
    11. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    12. Chamberlain, Gary, 1986. "Asymptotic efficiency in semi-parametric models with censoring," Journal of Econometrics, Elsevier, vol. 32(2), pages 189-218, July.
    13. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    14. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 497-517.
    15. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    16. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    17. Liu, Echu & Hsiao, Cheng & Matsumoto, Tomoya & Chou, Shinyi, 2009. "Maternal full-time employment and overweight children: Parametric, semi-parametric, and non-parametric assessment," Journal of Econometrics, Elsevier, vol. 152(1), pages 61-69, September.
    18. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    19. Arabmazar, Abbas & Schmidt, Peter, 1982. "An Investigation of the Robustness of the Tobit Estimator to Non-Normality," Econometrica, Econometric Society, vol. 50(4), pages 1055-1063, July.
    20. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    21. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    22. Whitney K. Newey, 2009. "Two-step series estimation of sample selection models," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 217-229, January.
    23. Hsiao,Cheng & Morimune,Kimio & Powell,James L. (ed.), 2001. "Nonlinear Statistical Modeling," Cambridge Books, Cambridge University Press, number 9780521662468, January.
    24. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    25. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    26. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    27. Lewis, H Gregg, 1974. "Comments on Selectivity Biases in Wage Comparisons," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1145-1155, Nov.-Dec..
    28. Tan, Lili & Zhang, Yichong, 2018. "Root-N Consistency Of Intercept Estimators In A Binary Response Model Under Tail Restrictions," Econometric Theory, Cambridge University Press, vol. 34(6), pages 1180-1206, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ruixuan & Yu, Zhengfei, 2022. "Sample selection models with monotone control functions," Journal of Econometrics, Elsevier, vol. 226(2), pages 321-342.
    2. Arulampalam, Wiji & Corradi, Valentina & Gutknecht, Daniel, 2021. "Intercept Estimation in Nonlinear Selection Models," IZA Discussion Papers 14364, Institute of Labor Economics (IZA).
    3. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    4. Biavaschi, Costanza, 2016. "Recovering the counterfactual wage distribution with selective return migration," Labour Economics, Elsevier, vol. 38(C), pages 59-80.
    5. D’Haultfœuille, Xavier & Maurel, Arnaud & Zhang, Yichong, 2018. "Extremal quantile regressions for selection models and the black–white wage gap," Journal of Econometrics, Elsevier, vol. 203(1), pages 129-142.
    6. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    7. Zhewen Pan & Zhengxin Wang & Junsen Zhang & Yahong Zhou, 2024. "Marginal treatment effects in the absence of instrumental variables," Papers 2401.17595, arXiv.org, revised Aug 2024.
    8. Katrin Hussinger, 2008. "R&D and subsidies at the firm level: an application of parametric and semiparametric two-step selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 729-747.
    9. Fernández-Sainz, Ana I. & Rodríguez-Póo, Juan M., 2010. "An Empirical Investigation of Parametric and Semiparametric Estimation Methods in Sample Selection Models = Investigación empírica de métodos de estimación paramétricos y semiparamétricos de modelos d," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 10(1), pages 99-120, December.
    10. Schafgans, Marcia M. A., 2000. "Gender wage differences in Malaysia: parametric and semiparametric estimation," Journal of Development Economics, Elsevier, vol. 63(2), pages 351-378, December.
    11. Chen, Songnian & Zhou, Yahong, 2010. "Semiparametric and nonparametric estimation of sample selection models under symmetry," Journal of Econometrics, Elsevier, vol. 157(1), pages 143-150, July.
    12. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    13. Khan, Shakeeb & Nekipelov, Denis, 2024. "On uniform inference in nonlinear models with endogeneity," Journal of Econometrics, Elsevier, vol. 240(2).
    14. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    15. Arthur Lewbel, 2005. "Simple Endogenous Binary Choice and Selection Panel Model Estimators," Boston College Working Papers in Economics 613, Boston College Department of Economics, revised 04 Sep 2006.
    16. Jochmans, Koen, 2015. "Multiplicative-error models with sample selection," Journal of Econometrics, Elsevier, vol. 184(2), pages 315-327.
    17. Timothy B Armstrong & Michal Kolesár, 2018. "A Simple Adjustment for Bandwidth Snooping," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 732-765.
    18. Wojtyś, Małgorzata & Marra, Giampiero & Radice, Rosalba, 2018. "Copula based generalized additive models for location, scale and shape with non-random sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 1-14.
    19. Mark McGovern & David Canning & Till Bärnighausen, 2018. "Accounting for Non-Response Bias using Participation Incentives and Survey Design," CHaRMS Working Papers 18-02, Centre for HeAlth Research at the Management School (CHaRMS).
    20. Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.05089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.