IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.13099.html
   My bibliography  Save this paper

Prediction of Customer Churn in Banking Industry

Author

Listed:
  • Sina Esmaeilpour Charandabi

Abstract

With the growing competition in banking industry, banks are required to follow customer retention strategies while they are trying to increase their market share by acquiring new customers. This study compares the performance of six supervised classification techniques to suggest an efficient model to predict customer churn in banking industry, given 10 demographic and personal attributes from 10000 customers of European banks. The effect of feature selection, class imbalance, and outliers will be discussed for ANN and random forest as the two competing models. As shown, unlike random forest, ANN does not reveal any serious concern regarding overfitting and is also robust to noise. Therefore, ANN structure with five nodes in a single hidden layer is recognized as the best performing classifier.

Suggested Citation

  • Sina Esmaeilpour Charandabi, 2023. "Prediction of Customer Churn in Banking Industry," Papers 2301.13099, arXiv.org.
  • Handle: RePEc:arx:papers:2301.13099
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.13099
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.13099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.