IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.04235.html
   My bibliography  Save this paper

A probabilistic autoencoder for causal discovery

Author

Listed:
  • Matthias Feiler

Abstract

The paper addresses the problem of finding the causal direction between two associated variables. The proposed solution is to build an autoencoder of their joint distribution and to maximize its estimation capacity relative to both the marginal distributions. It is shown that the resulting two capacities cannot, in general, be equal. This leads to a new criterion for causal discovery: the higher capacity is consistent with the unconstrained choice of a distribution representing the cause while the lower capacity reflects the constraints imposed by the mechanism on the distribution of the effect. Estimation capacity is defined as the ability of the auto-encoder to represent arbitrary datasets. A regularization term forces it to decide which one of the variables to model in a more generic way i.e., while maintaining higher model capacity. The causal direction is revealed by the constraints encountered while encoding the data instead of being measured as a property of the data itself. The idea is implemented and tested using a restricted Boltzmann machine.

Suggested Citation

  • Matthias Feiler, 2022. "A probabilistic autoencoder for causal discovery," Papers 2212.04235, arXiv.org.
  • Handle: RePEc:arx:papers:2212.04235
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.04235
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.04235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.