IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.16547.html
   My bibliography  Save this paper

Flexible machine learning estimation of conditional average treatment effects: a blessing and a curse

Author

Listed:
  • Richard Post
  • Isabel van den Heuvel
  • Marko Petkovic
  • Edwin van den Heuvel

Abstract

Causal inference from observational data requires untestable identification assumptions. If these assumptions apply, machine learning (ML) methods can be used to study complex forms of causal effect heterogeneity. Recently, several ML methods were developed to estimate the conditional average treatment effect (CATE). If the features at hand cannot explain all heterogeneity, the individual treatment effects (ITEs) can seriously deviate from the CATE. In this work, we demonstrate how the distributions of the ITE and the CATE can differ when a causal random forest (CRF) is applied. We extend the CRF to estimate the difference in conditional variance between treated and controls. If the ITE distribution equals the CATE distribution, this estimated difference in variance should be small. If they differ, an additional causal assumption is necessary to quantify the heterogeneity not captured by the CATE distribution. The conditional variance of the ITE can be identified when the individual effect is independent of the outcome under no treatment given the measured features. Then, in the cases where the ITE and CATE distributions differ, the extended CRF can appropriately estimate the variance of the ITE distribution while the CRF fails to do so.

Suggested Citation

  • Richard Post & Isabel van den Heuvel & Marko Petkovic & Edwin van den Heuvel, 2022. "Flexible machine learning estimation of conditional average treatment effects: a blessing and a curse," Papers 2210.16547, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2210.16547
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.16547
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.16547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.