IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.10425.html
   My bibliography  Save this paper

Optimal investment and reinsurance under exponential forward preferences

Author

Listed:
  • Katia Colaneri
  • Alessandra Cretarola
  • Benedetta Salterini

Abstract

We study the optimal investment and proportional reinsurance problem of an insurance company, whose investment preferences are described via a forward dynamic utility of exponential type in a stochastic factor model allowing for a possible dependence between the financial and insurance markets. Specifically, we assume that the asset price process dynamics and the claim arrival intensity are both affected by a common stochastic process and we account for a possible environmental contagion effect through the non-zero correlation parameter between the underlying Brownian motions driving the asset price process and the stochastic factor dynamics. By stochastic control techniques, we construct a forward dynamic exponential utility, and we characterize the optimal investment and reinsurance strategy. Moreover, we investigate in detail the zero-volatility case and provide a comparison analysis with classical results in an analogous setting under backward utility preferences. We also discuss an extension of the conditional certainty equivalent. Finally, we perform a numerical analysis to highlight some features of the optimal strategy.

Suggested Citation

  • Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2022. "Optimal investment and reinsurance under exponential forward preferences," Papers 2210.10425, arXiv.org.
  • Handle: RePEc:arx:papers:2210.10425
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.10425
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    2. M. Musiela & T. Zariphopoulou, 2009. "Portfolio choice under dynamic investment performance criteria," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 161-170.
    3. Gu, Ailing & Viens, Frederi G. & Yi, Bo, 2017. "Optimal reinsurance and investment strategies for insurers with mispricing and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 235-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenneth Tsz Hin Ng & Wing Fung Chong, 2023. "Optimal Investment in Defined Contribution Pension Schemes with Forward Utility Preferences," Papers 2303.08462, arXiv.org, revised Sep 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2021. "Optimal investment and proportional reinsurance in a regime-switching market model under forward preferences," Papers 2106.13888, arXiv.org.
    2. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    3. Gechun Liang & Thaleia Zariphopoulou, 2015. "Representation of homothetic forward performance processes in stochastic factor models via ergodic and infinite horizon BSDE," Papers 1511.04863, arXiv.org, revised Nov 2016.
    4. Wenyuan Wang & Kaixin Yan & Xiang Yu, 2024. "Optimal portfolio under ratio-type periodic evaluation in incomplete markets with stochastic factors," Papers 2401.14672, arXiv.org.
    5. Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2021. "Optimal Investment and Proportional Reinsurance in a Regime-Switching Market Model under Forward Preferences," Mathematics, MDPI, vol. 9(14), pages 1-27, July.
    6. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    7. Wenyuan Wang & Kaixin Yan & Xiang Yu, 2023. "Optimal Portfolio with Ratio Type Periodic Evaluation under Short-Selling Prohibition," Papers 2311.12517, arXiv.org, revised Dec 2023.
    8. Jean-Pierre Fouque & Ruimeng Hu & Ronnie Sircar, 2021. "Sub- and Super-solution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Market," Papers 2106.11510, arXiv.org, revised Oct 2021.
    9. Nicole Bauerle & Gregor Leimcke, 2020. "Robust Optimal Investment and Reinsurance Problems with Learning," Papers 2001.11301, arXiv.org.
    10. Kraft, Holger & Steffensen, Mogens, 2008. "How to invest optimally in corporate bonds: A reduced-form approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 348-385, February.
    11. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    12. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    13. Phillip Monin, 2013. "On a dynamic adaptation of the Distribution Builder approach to investment decisions," Papers 1301.0907, arXiv.org.
    14. Lin, Feng & Peng, Liang & Xie, Jiehua & Yang, Jingping, 2018. "Stochastic distortion and its transformed copula," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 148-166.
    15. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    16. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    17. Belkacem Berdjane & Sergei Pergamenshchikov, 2012. "Sequential $\delta$-optimal consumption and investment for stochastic volatility markets with unknown parameters," Working Papers hal-00743164, HAL.
    18. Tahir Choulli & Junfeng Ma, 2013. "Explicit Description of HARA Forward Utilities and Their Optimal Portfolios," Papers 1307.0785, arXiv.org.
    19. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    20. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.10425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.