IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.11344.html
   My bibliography  Save this paper

A proposed simulation technique for population stability testing in credit risk scorecards

Author

Listed:
  • J. du Pisanie
  • J. S. Allison
  • I. J. H. Visagie

Abstract

Credit risk scorecards are logistic regression models, fitted to large and complex data sets, employed by the financial industry to model the probability of default of a potential customer. In order to ensure that a scorecard remains a representative model of the population one tests the hypothesis of population stability; specifying that the distribution of clients' attributes remains constant over time. Simulating realistic data sets for this purpose is nontrivial as these data sets are multivariate and contain intricate dependencies. The simulation of these data sets are of practical interest for both practitioners and for researchers; practitioners may wish to consider the effect that a specified change in the properties of the data has on the scorecard and its usefulness from a business perspective, while researchers may wish to test a newly developed technique in credit scoring. We propose a simulation technique based on the specification of bad ratios, this is explained below. Practitioners can generally not be expected to provide realistic parameter values for a scorecard; these models are simply too complex and contain too many parameters to make such a specification viable. However, practitioners can often confidently specify the bad ratio associated with two different levels of a specific attribute. That is, practitioners are often comfortable with making statements such as "on average a new customer is 1.5 times as likely to default as an existing customer with similar attributes". We propose a method which can be used to obtain parameter values for a scorecard based on specified bad ratios. The proposed technique is demonstrated using a realistic example and we show that the simulated data sets adhere closely to the specified bad ratios. The paper provides a link to a github project in which the R code used in order to generate the results shown can be found.

Suggested Citation

  • J. du Pisanie & J. S. Allison & I. J. H. Visagie, 2022. "A proposed simulation technique for population stability testing in credit risk scorecards," Papers 2206.11344, arXiv.org.
  • Handle: RePEc:arx:papers:2206.11344
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.11344
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ross Taplin & Clive Hunt, 2019. "The Population Accuracy Index: A New Measure of Population Stability for Model Monitoring," Risks, MDPI, vol. 7(2), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johan du Pisanie & James Samuel Allison & Jaco Visagie, 2023. "A Proposed Simulation Technique for Population Stability Testing in Credit Risk Scorecards," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    2. Chamay Kruger & Willem Daniel Schutte & Tanja Verster, 2021. "Using Model Performance to Assess the Representativeness of Data for Model Development and Calibration in Financial Institutions," Risks, MDPI, vol. 9(11), pages 1-26, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.11344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.