IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.10419.html
   My bibliography  Save this paper

Multivariate Quadratic Hawkes Processes -- Part I: Theoretical Analysis

Author

Listed:
  • C'ecilia Aubrun
  • Michael Benzaquen
  • Jean-Philippe Bouchaud

Abstract

Quadratic Hawkes (QHawkes) processes have proved effective at reproducing the statistics of price changes, capturing many of the stylised facts of financial markets. Motivated by the recently reported strong occurrence of endogenous co-jumps (simultaneous price jumps of several assets) we extend QHawkes to a multivariate framework (MQHawkes), that is considering several financial assets and their interactions. Assuming that quadratic kernels write as the sum of a time-diagonal component and a rank one (trend) contribution, we investigate endogeneity ratios and the resulting stationarity conditions. We then derive the so-called Yule-Walker equations relating covariances and feedback kernels, which are essential to calibrate the MQHawkes process on empirical data. Finally, we investigate the volatility distribution of the process and find that, as in the univariate case, it exhibits power-law behavior, with an exponent that can be exactly computed in some limiting cases.

Suggested Citation

  • C'ecilia Aubrun & Michael Benzaquen & Jean-Philippe Bouchaud, 2022. "Multivariate Quadratic Hawkes Processes -- Part I: Theoretical Analysis," Papers 2206.10419, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2206.10419
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.10419
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyungsub Lee, 2024. "Discrete Hawkes process with flexible residual distribution and filtered historical simulation," Papers 2401.13890, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.10419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.