IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.06723.html
   My bibliography  Save this paper

Development of a hybrid method for stock trading based on TOPSIS, EMD and ELM

Author

Listed:
  • Elivelto Ebermam
  • Helder Knidel
  • Renato A. Krohling

Abstract

Deciding when to buy or sell a stock is not an easy task because the market is hard to predict, being influenced by political and economic factors. Thus, methodologies based on computational intelligence have been applied to this challenging problem. In this work, every day the stocks are ranked by technique for order preference by similarity to ideal solution (TOPSIS) using technical analysis criteria, and the most suitable stock is selected for purchase. Even so, it may occur that the market is not favorable to purchase on certain days, or even, the TOPSIS make an incorrect selection. To improve the selection, another method should be used. So, a hybrid model composed of empirical mode decomposition (EMD) and extreme learning machine (ELM) is proposed. The EMD decomposes the series into several sub-series, and thus the main omponent (trend) is extracted. This component is processed by the ELM, which performs the prediction of the next element of component. If the value predicted by the ELM is greater than the last value, then the purchase of the stock is confirmed. The method was applied in a universe of 50 stocks in the Brazilian market. The selection made by TOPSIS showed promising results when compared to the random selection and the return generated by the Bovespa index. Confirmation with the EMD-ELM hybrid model was able to increase the percentage of profit tradings.

Suggested Citation

  • Elivelto Ebermam & Helder Knidel & Renato A. Krohling, 2022. "Development of a hybrid method for stock trading based on TOPSIS, EMD and ELM," Papers 2206.06723, arXiv.org.
  • Handle: RePEc:arx:papers:2206.06723
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.06723
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    2. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    3. repec:pri:cepsud:91malkiel is not listed on IDEAS
    4. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    5. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    6. Cheng Lian & Zhigang Zeng & Wei Yao & Huiming Tang, 2013. "Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 759-771, March.
    7. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
    2. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    3. Jitka Veselá & Alžběta Zíková, 2022. "Are the Czech, Polish, German and Dutch markets taking a random walk? [Konají český, polský, německý a nizozemský trh náhodnou procházku?]," Český finanční a účetní časopis, Prague University of Economics and Business, vol. 2022(2), pages 19-38.
    4. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    5. Nathan Jensen, 2007. "International institutions and market expectations: Stock price responses to the WTO ruling on the 2002 U.S. steel tariffs," The Review of International Organizations, Springer, vol. 2(3), pages 261-280, September.
    6. Cristi Spulbar & Ramona Birau & Lucian Florin Spulbar, 2021. "A Critical Survey on Efficient Market Hypothesis (EMH), Adaptive Market Hypothesis (AMH) and Fractal Markets Hypothesis (FMH) Considering Their Implication on Stock Markets Behavior," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 1161-1165, December.
    7. Park, Cheol-Ho & Irwin, Scott H., 2004. "The Profitability Of Technical Trading Rules In Us Futures Markets: A Data Snooping Free Test," 2004 Conference, April 19-20, 2004, St. Louis, Missouri 19011, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    8. Taufiq Choudhry & Ranadeva Jayasekera, 2015. "Level of efficiency in the UK equity market: empirical study of the effects of the global financial crisis," Review of Quantitative Finance and Accounting, Springer, vol. 44(2), pages 213-242, February.
    9. Mahata, Ajit & Rai, Anish & Nurujjaman, Md. & Prakash, Om, 2021. "Modeling and analysis of the effect of COVID-19 on the stock price: V and L-shape recovery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    10. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    11. Admin Starcevic & Timothy Rodgers, 2011. "Market Efficiency within the German Stock Market: A Comparative Study of the Relative Efficiencies of the DAX, MDAX, SDAX and ASE Indices," International Econometric Review (IER), Econometric Research Association, vol. 3(1), pages 25-37, April.
    12. Saqib Farid & Rubeena Tashfeen & Tahseen Mohsan & Arsal Burhan, 2023. "Forecasting stock prices using a data mining method: Evidence from emerging market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1911-1917, April.
    13. Rešovský, Marcel & Gróf, Marek & Horváth, Denis & Gazda, Vladimír, 2014. "Analysis of the Lead-Lag Relationship on South Africa capital market," MPRA Paper 57309, University Library of Munich, Germany.
    14. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    15. Ziliotto, Arianna & Serati, Massimiliano, 2015. "The semi-strong efficiency debate: In search of a new testing framework," Research in International Business and Finance, Elsevier, vol. 34(C), pages 412-438.
    16. Svitlana Galeshchuk, 2017. "Technological bias at the exchange rate market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(2-3), pages 80-86, April.
    17. Fayssal Jamhamed & Franck Martin & Fabien Rondeau & Josué Thélissaint & Stéphane Tufféry, 2024. "Regime-Specific Dynamics and Informational Efficiency in Cryptomarkets: Evidence from Gaussian Mixture Models," Economics Working Paper Archive (University of Rennes & University of Caen) 2024-13, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    18. Yardley, Ben, 2020. "The Effects of Donald Trump’s Tweets on The Stock Exchange," MPRA Paper 102578, University Library of Munich, Germany.
    19. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    20. Brice Corgnet & Cary Deck & Mark DeSantis & David Porter, 2022. "Forecasting Skills in Experimental Markets: Illusion or Reality?," Management Science, INFORMS, vol. 68(7), pages 5216-5232, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.06723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.