IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.02685.html
   My bibliography  Save this paper

Relative cluster entropy for power-law correlated sequences

Author

Listed:
  • A. Carbone
  • L. Ponta

Abstract

We propose an information-theoretical measure, the \textit{relative cluster entropy} $\mathcal{D_{C}}[P \| Q] $, to discriminate among cluster partitions characterised by probability distribution functions $P$ and $Q$. The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents $H_1$ and $H_2$ respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between $H_1$ and $H_2$. By using the \textit{minimum relative entropy} principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The \textit{minimum relative cluster entropy} yields optimal Hurst exponents $H_1=0.55$, $H_1=0.57$, and $H_1=0.63$ respectively for the prices of DJIA, S\&P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables.

Suggested Citation

  • A. Carbone & L. Ponta, 2022. "Relative cluster entropy for power-law correlated sequences," Papers 2206.02685, arXiv.org, revised Aug 2022.
  • Handle: RePEc:arx:papers:2206.02685
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.02685
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.02685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.