IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.15699.html
   My bibliography  Save this paper

A novel approach to rating transition modelling via Machine Learning and SDEs on Lie groups

Author

Listed:
  • Kevin Kamm
  • Michelle Muniz

Abstract

In this paper, we introduce a novel methodology to model rating transitions with a stochastic process. To introduce stochastic processes, whose values are valid rating matrices, we noticed the geometric properties of stochastic matrices and its link to matrix Lie groups. We give a gentle introduction to this topic and demonstrate how It\^o-SDEs in R will generate the desired model for rating transitions. To calibrate the rating model to historical data, we use a Deep-Neural-Network (DNN) called TimeGAN to learn the features of a time series of historical rating matrices. Then, we use this DNN to generate synthetic rating transition matrices. Afterwards, we fit the moments of the generated rating matrices and the rating process at specific time points, which results in a good fit. After calibration, we discuss the quality of the calibrated rating transition process by examining some properties that a time series of rating matrices should satisfy, and we will see that this geometric approach works very well.

Suggested Citation

  • Kevin Kamm & Michelle Muniz, 2022. "A novel approach to rating transition modelling via Machine Learning and SDEs on Lie groups," Papers 2205.15699, arXiv.org.
  • Handle: RePEc:arx:papers:2205.15699
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.15699
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    2. Tomasz R. Bielecki & Marek Rutkowski, 2000. "Multiple Ratings Model of Defaultable Term Structure," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 125-139, April.
    3. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin Kamm, 2022. "An introduction to rating triggers for collateral-inclusive XVA in an ICTMC framework," Papers 2207.03883, arXiv.org.
    2. Kamm, Kevin & Pagliarani, Stefano & Pascucci, Andrea, 2023. "Numerical solution of kinetic SPDEs via stochastic Magnus expansion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 189-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    2. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.
    3. Batten, Jonathan & Hogan, Warren, 2002. "A perspective on credit derivatives," International Review of Financial Analysis, Elsevier, vol. 11(3), pages 251-278.
    4. Valerio Vacca, 2011. "An unexpected crisis? Looking at pricing effectiveness of different banks," Temi di discussione (Economic working papers) 814, Bank of Italy, Economic Research and International Relations Area.
    5. Wozabal, David & Hochreiter, Ronald, 2012. "A coupled Markov chain approach to credit risk modeling," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 403-415.
    6. Wei, Jason Z., 2003. "A multi-factor, credit migration model for sovereign and corporate debts," Journal of International Money and Finance, Elsevier, vol. 22(5), pages 709-735, October.
    7. Jeffrey R. Stokes, 2023. "A nonlinear inversion procedure for modeling the effects of economic factors on credit risk migration," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 855-878, October.
    8. Lando, David & Mortensen, Allan, 2004. "On the Pricing of Step-Up Bonds in the European Telecom Sector," Working Papers 2004-9, Copenhagen Business School, Department of Finance.
    9. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    10. Mogens Bladt & Michael SØrensen, 2009. "Efficient estimation of transition rates between credit ratings from observations at discrete time points," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 147-160.
    11. Tamás Kristóf, 2021. "Sovereign Default Forecasting in the Era of the COVID-19 Crisis," JRFM, MDPI, vol. 14(10), pages 1-24, October.
    12. Areski Cousin & Jérôme Lelong & Tom Picard, 2023. "Rating transitions forecasting: a filtering approach," Post-Print hal-03347521, HAL.
    13. Xing, Haipeng & Sun, Ning & Chen, Ying, 2012. "Credit rating dynamics in the presence of unknown structural breaks," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 78-89.
    14. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    15. Fuertes, Ana-Maria & Kalotychou, Elena, 2007. "On sovereign credit migration: A study of alternative estimators and rating dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3448-3469, April.
    16. Michael Kalkbrener & Natalie Packham, 2024. "A Markov approach to credit rating migration conditional on economic states," Papers 2403.14868, arXiv.org.
    17. Areski Cousin & J'er^ome Lelong & Tom Picard, 2021. "Rating transitions forecasting: a filtering approach," Papers 2109.10567, arXiv.org, revised Jun 2023.
    18. Thomas Lagner & Dodozu Knyphausen‐Aufseß, 2012. "Rating Agencies as Gatekeepers to the Capital Market: Practical Implications of 40 Years of Research," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 21(3), pages 157-202, August.
    19. Abaffy, J. & Bertocchi, M. & Dupacova, J. & Moriggia, V. & Consigli, G., 2007. "Pricing nondiversifiable credit risk in the corporate Eurobond market," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2233-2263, August.
    20. Jafry, Yusuf & Schuermann, Til, 2004. "Measurement, estimation and comparison of credit migration matrices," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2603-2639, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.15699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.