Deep Learning in Business Analytics: A Clash of Expectations and Reality
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peter Martey Addo & Dominique Guégan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Documents de travail du Centre d'Economie de la Sorbonne 18003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Shigeyuki Hamori & Minami Kawai & Takahiro Kume & Yuji Murakami & Chikara Watanabe, 2018.
"Ensemble Learning or Deep Learning? Application to Default Risk Analysis,"
JRFM, MDPI, vol. 11(1), pages 1-14, March.
- Shigeyuki Hamori & Minami Kawai & Takahiro Kume & Yuji Murakami & Chikara Watanabe, 2018. "Ensemble Learning or Deep Learning? Application to Default Risk Analysis," Discussion Papers 1802, Graduate School of Economics, Kobe University.
- Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Working Papers 2018:08, Department of Economics, University of Venice "Ca' Foscari".
- Collins, Christopher & Dennehy, Denis & Conboy, Kieran & Mikalef, Patrick, 2021. "Artificial intelligence in information systems research: A systematic literature review and research agenda," International Journal of Information Management, Elsevier, vol. 60(C).
- David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
- Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marc Schmitt, 2022. "Deep Learning vs. Gradient Boosting: Benchmarking state-of-the-art machine learning algorithms for credit scoring," Papers 2205.10535, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
- Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
- Marc Schmitt, 2022. "Deep Learning vs. Gradient Boosting: Benchmarking state-of-the-art machine learning algorithms for credit scoring," Papers 2205.10535, arXiv.org.
- Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
- Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
- Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
- Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
- Theuri, Joseph & Olukuru, John, 2022. "The impact of Artficial Intelligence and how it is shaping banking," KBA Centre for Research on Financial Markets and Policy Working Paper Series 61, Kenya Bankers Association (KBA).
- José Américo Pereira Antunes, 2021. "To supervise or to self-supervise: a machine learning based comparison on credit supervision," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-21, December.
- Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
- Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
- Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Seyyide Doğan & Yasin Büyükkör & Murat Atan, 2022. "A comparative study of corporate credit ratings prediction with machine learning," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 25-47.
- Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
- Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
- Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
- Irving Fisher Committee, 2019. "The use of big data analytics and artificial intelligence in central banking," IFC Bulletins, Bank for International Settlements, number 50.
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-07-11 (Big Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.09337. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.