IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.06673.html
   My bibliography  Save this paper

Univariate and Multivariate LSTM Model for Short-Term Stock Market Prediction

Author

Listed:
  • Vishal Kuber
  • Divakar Yadav
  • Arun Kr Yadav

Abstract

Designing robust and accurate prediction models has been a viable research area since a long time. While proponents of a well-functioning market predictors believe that it is difficult to accurately predict market prices but many scholars disagree. Robust and accurate prediction systems will not only be helpful to the businesses but also to the individuals in making their financial investments. This paper presents an LSTM model with two different input approaches for predicting the short-term stock prices of two Indian companies, Reliance Industries and Infosys Ltd. Ten years of historic data (2012-2021) is taken from the yahoo finance website to carry out analysis of proposed approaches. In the first approach, closing prices of two selected companies are directly applied on univariate LSTM model. For the approach second, technical indicators values are calculated from the closing prices and then collectively applied on Multivariate LSTM model. Short term market behaviour for upcoming days is evaluated. Experimental outcomes revel that approach one is useful to determine the future trend but multivariate LSTM model with technical indicators found to be useful in accurately predicting the future price behaviours.

Suggested Citation

  • Vishal Kuber & Divakar Yadav & Arun Kr Yadav, 2022. "Univariate and Multivariate LSTM Model for Short-Term Stock Market Prediction," Papers 2205.06673, arXiv.org.
  • Handle: RePEc:arx:papers:2205.06673
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.06673
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.06673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.