IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.05600.html
   My bibliography  Save this paper

RLOP: RL Methods in Option Pricing from a Mathematical Perspective

Author

Listed:
  • Ziheng Chen

Abstract

In this work, we build two environments, namely the modified QLBS and RLOP models, from a mathematics perspective which enables RL methods in option pricing through replicating by portfolio. We implement the environment specifications (the source code can be found at https://github.com/owen8877/RLOP), the learning algorithm, and agent parametrization by a neural network. The learned optimal hedging strategy is compared against the BS prediction. The effect of various factors is considered and studied based on how they affect the optimal price and position.

Suggested Citation

  • Ziheng Chen, 2022. "RLOP: RL Methods in Option Pricing from a Mathematical Perspective," Papers 2205.05600, arXiv.org.
  • Handle: RePEc:arx:papers:2205.05600
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.05600
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saeed Marzban & Erick Delage & Jonathan Yumeng Li, 2021. "Deep Reinforcement Learning for Equal Risk Pricing and Hedging under Dynamic Expectile Risk Measures," Papers 2109.04001, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.05600. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.