IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2201.09058.html
   My bibliography  Save this paper

DeepScalper: A Risk-Aware Reinforcement Learning Framework to Capture Fleeting Intraday Trading Opportunities

Author

Listed:
  • Shuo Sun
  • Wanqi Xue
  • Rundong Wang
  • Xu He
  • Junlei Zhu
  • Jian Li
  • Bo An

Abstract

Reinforcement learning (RL) techniques have shown great success in many challenging quantitative trading tasks, such as portfolio management and algorithmic trading. Especially, intraday trading is one of the most profitable and risky tasks because of the intraday behaviors of the financial market that reflect billions of rapidly fluctuating capitals. However, a vast majority of existing RL methods focus on the relatively low frequency trading scenarios (e.g., day-level) and fail to capture the fleeting intraday investment opportunities due to two major challenges: 1) how to effectively train profitable RL agents for intraday investment decision-making, which involves high-dimensional fine-grained action space; 2) how to learn meaningful multi-modality market representation to understand the intraday behaviors of the financial market at tick-level. Motivated by the efficient workflow of professional human intraday traders, we propose DeepScalper, a deep reinforcement learning framework for intraday trading to tackle the above challenges. Specifically, DeepScalper includes four components: 1) a dueling Q-network with action branching to deal with the large action space of intraday trading for efficient RL optimization; 2) a novel reward function with a hindsight bonus to encourage RL agents making trading decisions with a long-term horizon of the entire trading day; 3) an encoder-decoder architecture to learn multi-modality temporal market embedding, which incorporates both macro-level and micro-level market information; 4) a risk-aware auxiliary task to maintain a striking balance between maximizing profit and minimizing risk. Through extensive experiments on real-world market data spanning over three years on six financial futures, we demonstrate that DeepScalper significantly outperforms many state-of-the-art baselines in terms of four financial criteria.

Suggested Citation

  • Shuo Sun & Wanqi Xue & Rundong Wang & Xu He & Junlei Zhu & Jian Li & Bo An, 2021. "DeepScalper: A Risk-Aware Reinforcement Learning Framework to Capture Fleeting Intraday Trading Opportunities," Papers 2201.09058, arXiv.org, revised Aug 2022.
  • Handle: RePEc:arx:papers:2201.09058
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2201.09058
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    2. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    3. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    4. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    5. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    6. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    7. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    8. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    9. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molei Qin & Shuo Sun & Wentao Zhang & Haochong Xia & Xinrun Wang & Bo An, 2023. "EarnHFT: Efficient Hierarchical Reinforcement Learning for High Frequency Trading," Papers 2309.12891, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    2. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    3. Chelley-Steeley, Patricia & Park, Keebong, 2010. "The adverse selection component of exchange traded funds," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 65-76, January.
    4. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    5. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 27, July-Dece.
    6. Wentao Zhang & Yilei Zhao & Shuo Sun & Jie Ying & Yonggang Xie & Zitao Song & Xinrun Wang & Bo An, 2023. "Reinforcement Learning with Maskable Stock Representation for Portfolio Management in Customizable Stock Pools," Papers 2311.10801, arXiv.org, revised Feb 2024.
    7. Ibikunle, Gbenga, 2018. "Trading places: Price leadership and the competition for order flow," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 178-200.
    8. repec:uts:finphd:34 is not listed on IDEAS
    9. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    10. Chung, Dennis & Hrazdil, Karel, 2010. "Liquidity and market efficiency: A large sample study," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2346-2357, October.
    11. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    12. Pierre-Cyrille Hautcoeur & Amir Rezaee & Angelo Riva, 2023. "Competition between securities markets: stock exchange industry regulation in the Paris financial center at the turn of the twentieth century," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 17(2), pages 261-299, May.
    13. Ait-Sahalia, Yacine, 1998. "Dynamic equilibrium and volatility in financial asset markets," Journal of Econometrics, Elsevier, vol. 84(1), pages 93-127, May.
    14. Sandrine Jacob Leal, 2015. "Fundamentalists, Chartists and Asset pricing anomalies," Post-Print hal-01508002, HAL.
    15. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    16. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    17. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2008. "Liquidity and market efficiency," Journal of Financial Economics, Elsevier, vol. 87(2), pages 249-268, February.
    18. Chen, Pei-wen & Huang, Han-ching & Su, Yong-chern, 2014. "The central bank in market efficiency: The case of Taiwan," Pacific-Basin Finance Journal, Elsevier, vol. 29(C), pages 239-260.
    19. Liao Xu & Xiangkang Yin & Jing Zhao, 2022. "Are the flows of exchange‐traded funds informative?," Financial Management, Financial Management Association International, vol. 51(4), pages 1165-1200, December.
    20. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6-2015, January-A.
    21. Crossland, Jarrod & Li, Bin & Roca, Eduardo, 2013. "Is the European Union Emissions Trading Scheme (EU ETS) informationally efficient? Evidence from momentum-based trading strategies," Applied Energy, Elsevier, vol. 109(C), pages 10-23.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.09058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.