IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2201.01010.html
   My bibliography  Save this paper

A Double Robust Approach for Non-Monotone Missingness in Multi-Stage Data

Author

Listed:
  • Shenshen Yang

Abstract

Multivariate missingness with a non-monotone missing pattern is complicated to deal with in empirical studies. The traditional Missing at Random (MAR) assumption is difficult to justify in such cases. Previous studies have strengthened the MAR assumption, suggesting that the missing mechanism of any variable is random when conditioned on a uniform set of fully observed variables. However, empirical evidence indicates that this assumption may be violated for variables collected at different stages. This paper proposes a new MAR-type assumption that fits non-monotone missing scenarios involving multi-stage variables. Based on this assumption, we construct an Augmented Inverse Probability Weighted GMM (AIPW-GMM) estimator. This estimator features an asymmetric format for the augmentation term, guarantees double robustness, and achieves the closed-form semiparametric efficiency bound. We apply this method to cases of missingness in both endogenous regressor and outcome, using the Oregon Health Insurance Experiment as an example. We check the correlation between missing probabilities and partially observed variables to justify the assumption. Moreover, we find that excluding incomplete data results in a loss of efficiency and insignificant estimators. The proposed estimator reduces the standard error by more than 50% for the estimated effects of the Oregon Health Plan on the elderly.

Suggested Citation

  • Shenshen Yang, 2022. "A Double Robust Approach for Non-Monotone Missingness in Multi-Stage Data," Papers 2201.01010, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2201.01010
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2201.01010
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.01010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.