IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.15036.html
   My bibliography  Save this paper

Dimensionality reduction for prediction: Application to Bitcoin and Ethereum

Author

Listed:
  • Hugo Inzirillo
  • Benjamin Mat

Abstract

The objective of this paper is to assess the performances of dimensionality reduction techniques to establish a link between cryptocurrencies. We have focused our analysis on the two most traded cryptocurrencies: Bitcoin and Ethereum. To perform our analysis, we took log returns and added some covariates to build our data set. We first introduced the pearson correlation coefficient in order to have a preliminary assessment of the link between Bitcoin and Ethereum. We then reduced the dimension of our data set using canonical correlation analysis and principal component analysis. After performing an analysis of the links between Bitcoin and Ethereum with both statistical techniques, we measured their performance on forecasting Ethereum returns with Bitcoin s features.

Suggested Citation

  • Hugo Inzirillo & Benjamin Mat, 2021. "Dimensionality reduction for prediction: Application to Bitcoin and Ethereum," Papers 2112.15036, arXiv.org, revised Feb 2022.
  • Handle: RePEc:arx:papers:2112.15036
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.15036
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sifat, Imtiaz Mohammad & Mohamad, Azhar & Mohamed Shariff, Mohammad Syazwan Bin, 2019. "Lead-Lag relationship between Bitcoin and Ethereum: Evidence from hourly and daily data," Research in International Business and Finance, Elsevier, vol. 50(C), pages 306-321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    2. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    3. Ajithakumari Vijayappan Nair Biju & Ann Susan Thomas, 2023. "Uncertainties and ambivalence in the crypto market: an urgent need for a regional crypto regulation," SN Business & Economics, Springer, vol. 3(8), pages 1-21, August.
    4. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Al-Jarrah, Idries Mohammad Wanas & Vo, Xuan Vinh & Kang, Sang Hoon, 2020. "Dynamic volatility transmission and portfolio management across major cryptocurrencies: Evidence from hourly data," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    5. Aiman Hairudin & Imtiaz Mohammad Sifat & Azhar Mohamad & Yusniliyana Yusof, 2022. "Cryptocurrencies: A survey on acceptance, governance and market dynamics," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4633-4659, October.
    6. Goodell, John W. & Goutte, Stephane, 2021. "Diversifying equity with cryptocurrencies during COVID-19," International Review of Financial Analysis, Elsevier, vol. 76(C).
    7. Mokni, Khaled & Youssef, Manel & Ajmi, Ahdi Noomen, 2022. "COVID-19 pandemic and economic policy uncertainty: The first test on the hedging and safe haven properties of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 60(C).
    8. BRIK, Hatem & El OUAKDI, Jihene & FTITI, Zied, 2022. "Roles of stable versus nonstable cryptocurrencies in Bitcoin market dynamics," Research in International Business and Finance, Elsevier, vol. 62(C).
    9. Onur Özdemir, 2022. "Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: evidence from DCC-GARCH and wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    10. Zhu, Huimin & Xiao, Xinping & Kang, Yuxiao & Kong, Dekai, 2022. "Lead-lag grey forecasting model in the new community group buying retailing," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Nakagawa, Kei & Sakemoto, Ryuta, 2022. "Market uncertainty and correlation between Bitcoin and Ether," Finance Research Letters, Elsevier, vol. 50(C).
    12. Fulvia Pennoni & Francesco Bartolucci & Gianfranco Forte & Ferdinando Ametrano, 2022. "Exploring the dependencies among main cryptocurrency log‐returns: A hidden Markov model," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(1), February.
    13. Salisu, Afees A. & Ogbonna, Ahamuefula E., 2022. "The return volatility of cryptocurrencies during the COVID-19 pandemic: Assessing the news effect," Global Finance Journal, Elsevier, vol. 54(C).
    14. Apostolakis, George N., 2024. "Bitcoin price volatility transmission between spot and futures markets," International Review of Financial Analysis, Elsevier, vol. 94(C).
    15. Demir, Ender & Simonyan, Serdar & García-Gómez, Conrado-Diego & Lau, Chi Keung Marco, 2021. "The asymmetric effect of bitcoin on altcoins: evidence from the nonlinear autoregressive distributed lag (NARDL) model," Finance Research Letters, Elsevier, vol. 40(C).
    16. Donglian Ma & Hisashi Tanizaki, 2022. "Intraday patterns of price clustering in Bitcoin," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    17. Hafner, Christian M. & Herwartz, Helmut, 2023. "Correlation impulse response functions," Finance Research Letters, Elsevier, vol. 57(C).
    18. Jinxin Cui & Aktham Maghyereh, 2022. "Time–frequency co-movement and risk connectedness among cryptocurrencies: new evidence from the higher-order moments before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    19. Moussa, Wajdi & Mgadmi, Nidhal & Béjaoui, Azza & Regaieg, Rym, 2021. "Exploring the dynamic relationship between Bitcoin and commodities: New insights through STECM model," Resources Policy, Elsevier, vol. 74(C).
    20. Zainudin, Ahmad Danial & Mohamad, Azhar, 2021. "Financial contagion in the futures markets amidst global geo-economic events," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 288-308.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.15036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.