IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.07277.html
   My bibliography  Save this paper

Modal equilibrium of a tradable credit scheme with a trip-based MFD and logit-based decision-making

Author

Listed:
  • Louis Balzer

    (Universit\'e Gustave Eiffel, ENTPE)

  • Ludovic Leclercq

    (Universit\'e Gustave Eiffel, ENTPE)

Abstract

The literature about tradable credit schemes (TCS) as a demand management system alleviating congestion flourished in the past decade. Most proposed formulations are based on static models and thus do not account for the congestion dynamics. This paper considers elastic demand and implements a TCS to foster modal shift by restricting the number of cars allowed in the network over the day. A trip-based Macroscopic Fundamental Diagram (MFD) model represents the traffic dynamics at the whole urban scale. We assume the users have different OD pairs and choose between driving their car or riding the transit following a logit model. We aim to compute the modal shares and credit price at equilibrium under TCS. The travel times are linearized with respect to the modal shares to improve the convergence. We then present a method to find the credit charge minimizing the total travel time alone or combined with the carbon emission. The proposed methodology is illustrated with a typical demand profile from 7:00 to 10:00 for Lyon Metropolis. We show that traffic dynamics and trip heterogeneity matter when deriving the modal equilibrium under a TCS. A method is described to compute the linearization of the travel times and compared against a classical descend method (MSA). The proposed linearization is a promising tool to circumvent the complexity of the implicit formulation of the trip-based MFD. Under an optimized TCS, the total travel time decreases by 17% and the carbon emission by 45% by increasing the PT share by 24 points.

Suggested Citation

  • Louis Balzer & Ludovic Leclercq, 2021. "Modal equilibrium of a tradable credit scheme with a trip-based MFD and logit-based decision-making," Papers 2112.07277, arXiv.org, revised Apr 2022.
  • Handle: RePEc:arx:papers:2112.07277
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.07277
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2019. "Regulating dynamic congestion externalities with tradable credit schemes: Does a unique equilibrium exist?," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 225-236.
    2. Tian, Li-Jun & Yang, Hai & Huang, Hai-Jun, 2013. "Tradable credit schemes for managing bottleneck congestion and modal split with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 1-13.
    3. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    4. Jia, Zehui & Wang, David Z.W. & Cai, Xingju, 2016. "Traffic managements for household travels in congested morning commute," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 173-189.
    5. Wang, Xiaolei & Yang, Hai, 2012. "Bisection-based trial-and-error implementation of marginal cost pricing and tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1085-1096.
    6. Jin, Wen-Long, 2020. "Generalized bathtub model of network trip flows," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 138-157.
    7. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    8. Mariotte, Guilhem & Leclercq, Ludovic & Batista, S.F.A. & Krug, Jean & Paipuri, Mahendra, 2020. "Calibration and validation of multi-reservoir MFD models: A case study in Lyon," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 62-86.
    9. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    10. de Palma, André & Proost, Stef & Seshadri, Ravi & Ben-Akiva, Moshe, 2018. "Congestion tolling - dollars versus tokens: A comparative analysis," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 261-280.
    11. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    12. Wang, Xiaolei & Yang, Hai & Zhu, Daoli & Li, Changmin, 2012. "Tradable travel credits for congestion management with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 426-437.
    13. Miralinaghi, Mohammad & Peeta, Srinivas, 2016. "Multi-period equilibrium modeling planning framework for tradable credit schemes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 177-198.
    14. Mariotte, Guilhem & Leclercq, Ludovic & Laval, Jorge A., 2017. "Macroscopic urban dynamics: Analytical and numerical comparisons of existing models," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 245-267.
    15. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    16. Ye, Hongbo & Yang, Hai, 2013. "Continuous price and flow dynamics of tradable mobility credits," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 436-450.
    17. Wang, Guangmin & Xu, Meng & Grant-Muller, Susan & Gao, Zaihan, 2020. "Combination of tradable credit scheme and link capacity improvement to balance economic growth and environmental management in sustainable-oriented transport development: A bi-objective bi-level progr," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 459-471.
    18. Xiao, Feng & Qian, Zhen (Sean) & Zhang, H. Michael, 2013. "Managing bottleneck congestion with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 1-14.
    19. E Verhoef & P Nijkamp & P Rietveld, 1997. "Tradeable Permits: Their Potential in the Regulation of Road Transport Externalities," Environment and Planning B, , vol. 24(4), pages 527-548, August.
    20. Lamotte, Raphaël & Geroliminis, Nikolas, 2018. "The morning commute in urban areas with heterogeneous trip lengths," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 794-810.
    21. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pandey, Ayush & Lehe, Lewis J. & Gayah, Vikash V., 2024. "Local stability of traffic equilibria in an isotropic network," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    2. Fei Han & Jian Wang & Lingli Huang & Yan Li & Liu He, 2023. "Modeling Impacts of Implementation Policies of Tradable Credit Schemes on Traffic Congestion in the Context of Traveler’s Cognitive Illusion," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    3. Provoost, Jesper & Cats, Oded & Hoogendoorn, Serge, 2023. "Design and classification of tradable mobility credit schemes," Transport Policy, Elsevier, vol. 136(C), pages 59-69.
    4. Ding, Hongxing & Yang, Hai & Qin, Xiaoran & Xu, Hongli, 2023. "Credit charge-cum-reward scheme for green multi-modal mobility," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    5. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    6. Louis Balzer & Ludovic Leclercq, 2024. "Modal dynamic equilibrium under different demand management schemes," Transportation, Springer, vol. 51(2), pages 529-566, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Fan, Ruochuan & Chen, Junlan, 2022. "Managing bottleneck congestion with tradable credit scheme under demand uncertainty," Research in Transportation Economics, Elsevier, vol. 95(C).
    2. Siyu Chen & Ravi Seshadri & Carlos Lima Azevedo & Arun P. Akkinepally & Renming Liu & Andrea Araldo & Yu Jiang & Moshe E. Ben-Akiva, 2021. "Market Design for Tradable Mobility Credits," Papers 2101.00669, arXiv.org, revised Sep 2022.
    3. Zhang, Fang & Lu, Jian & Hu, Xiaojian, 2021. "Tradable credit scheme design with transaction cost and equity constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    4. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    5. Fan, Wenbo & Xiao, Feng & Nie, Yu (Macro), 2022. "Managing bottleneck congestion with tradable credits under asymmetric transaction cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Ravi Seshadri & André de Palma & Moshe Ben-Akiva, 2021. "Congestion Tolling−Dollars versus Tokens: Within-day Dynamics," THEMA Working Papers 2021-12, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    7. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    8. Louis Balzer & Ludovic Leclercq, 2024. "Modal dynamic equilibrium under different demand management schemes," Transportation, Springer, vol. 51(2), pages 529-566, April.
    9. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2019. "Regulating dynamic congestion externalities with tradable credit schemes: Does a unique equilibrium exist?," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 225-236.
    10. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    11. Dao-Li Zhu & Hai Yang & Chang-Min Li & Xiao-Lei Wang, 2015. "Properties of the Multiclass Traffic Network Equilibria Under a Tradable Credit Scheme," Transportation Science, INFORMS, vol. 49(3), pages 519-534, August.
    12. Nie, Yu (Marco), 2017. "On the potential remedies for license plate rationing," Economics of Transportation, Elsevier, vol. 9(C), pages 37-50.
    13. Xiao, Feng & Qian, Zhen (Sean) & Zhang, H. Michael, 2013. "Managing bottleneck congestion with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 1-14.
    14. Lessan, Javad & Fu, Liping & Bachmann, Chris, 2020. "Towards user-centric, market-driven mobility management of road traffic using permit-based schemes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    15. Lahlou, Salem & Wynter, Laura, 2017. "A Nash equilibrium formulation of a tradable credits scheme for incentivizing transport choices: From next-generation public transport mode choice to HOT lanes," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 185-212.
    16. Gao, Ge & Sun, Huijun & Wu, Jianjun & Liu, Xinmin & Chen, Weiya, 2018. "Park-and-ride service design under a price-based tradable credits scheme in a linear monocentric city," Transport Policy, Elsevier, vol. 68(C), pages 1-12.
    17. Devi Brands & Erik Verhoef & Jasper Knockaert, 2021. "Pcoins for parking: a field experiment with tradable mobility permits," Tinbergen Institute Discussion Papers 21-029/VIII, Tinbergen Institute.
    18. Jia, Zehui & Wang, David Z.W. & Cai, Xingju, 2016. "Traffic managements for household travels in congested morning commute," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 173-189.
    19. Wang, Jing-Peng & Liu, Tian-Liang & Huang, Hai-Jun, 2018. "Tradable OD-based travel permits for bi-modal traffic management with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 589-605.
    20. Xu, Meng & Grant-Muller, Susan, 2016. "Trip mode and travel pattern impacts of a Tradable Credits Scheme: A case study of Beijing," Transport Policy, Elsevier, vol. 47(C), pages 72-83.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.07277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.