IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.04637.html
   My bibliography  Save this paper

Efficient counterfactual estimation in semiparametric discrete choice models: a note on Chiong, Hsieh, and Shum (2017)

Author

Listed:
  • Grigory Franguridi

Abstract

I suggest an enhancement of the procedure of Chiong, Hsieh, and Shum (2017) for calculating bounds on counterfactual demand in semiparametric discrete choice models. Their algorithm relies on a system of inequalities indexed by cycles of a large number $M$ of observed markets and hence seems to require computationally infeasible enumeration of all such cycles. I show that such enumeration is unnecessary because solving the "fully efficient" inequality system exploiting cycles of all possible lengths $K=1,\dots,M$ can be reduced to finding the length of the shortest path between every pair of vertices in a complete bidirected weighted graph on $M$ vertices. The latter problem can be solved using the Floyd--Warshall algorithm with computational complexity $O\left(M^3\right)$, which takes only seconds to run even for thousands of markets. Monte Carlo simulations illustrate the efficiency gain from using cycles of all lengths, which turns out to be positive, but small.

Suggested Citation

  • Grigory Franguridi, 2021. "Efficient counterfactual estimation in semiparametric discrete choice models: a note on Chiong, Hsieh, and Shum (2017)," Papers 2112.04637, arXiv.org.
  • Handle: RePEc:arx:papers:2112.04637
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.04637
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.04637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.