IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.12564.html
   My bibliography  Save this paper

Conditional Estimates of Diffusion Processes for Evaluating the Positive Feedback Trading

Author

Listed:
  • Aihua Li

Abstract

Positive feedback trading, which buys when prices rise and sells when prices fall, has long been criticized for being destabilizing as it moves prices away from the fundamentals. Motivated by the relationship between positive feedback trading and investors cognitive bias, this paper provides a quantitative measurement of the bias based on the conditional estimates of diffusion processes. We prove the asymptotic properties of the estimates, which helps to interpret the investment behaviors that if a feedback trader finds a security perform better than his expectation, he will expect the future return to be higher, while in the long term, this bias will converge to zero. Furthermore, the observed deviations between the return forecast and its realized value lead to adaptive expectations in reality, for which we raise an exponential smoothing model as an adjustment method. In the empirical study on the stock market in China, we show the effectiveness of the ES method in bringing the biased expectation closer to the fundamental level, and suggest that the feedback traders, who are often over-optimistic about the return, are likely to suffer from downside risk and aggravate the speculative bubbles in the market.

Suggested Citation

  • Aihua Li, 2021. "Conditional Estimates of Diffusion Processes for Evaluating the Positive Feedback Trading," Papers 2111.12564, arXiv.org.
  • Handle: RePEc:arx:papers:2111.12564
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.12564
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antoniou, Antonios & Koutmos, Gregory & Pericli, Andreas, 2005. "Index futures and positive feedback trading: evidence from major stock exchanges," Journal of Empirical Finance, Elsevier, vol. 12(2), pages 219-238, March.
    2. De Long, J Bradford, et al, 1990. "Positive Feedback Investment Strategies and Destabilizing Rational Speculation," Journal of Finance, American Finance Association, vol. 45(2), pages 379-395, June.
    3. Zhi-Min Dai & De-Cheng Yang, 2018. "Positive Feedback Trading and Investor Sentiment," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(10), pages 2400-2408, August.
    4. Gregory Koutmos & Reza Saidi, 2001. "Positive feedback trading in emerging capital markets," Applied Financial Economics, Taylor & Francis Journals, vol. 11(3), pages 291-297.
    5. Baker, Malcolm & Stein, Jeremy C., 2004. "Market liquidity as a sentiment indicator," Journal of Financial Markets, Elsevier, vol. 7(3), pages 271-299, June.
    6. Gregory W. Brown & Michael T. Cliff, 2005. "Investor Sentiment and Asset Valuation," The Journal of Business, University of Chicago Press, vol. 78(2), pages 405-440, March.
    7. Benjamin Cohen & Hyun Song Shin, 2002. "Positive feedback trading under stress: evidence from the US Treasury securities market," BIS Papers chapters, in: Bank for International Settlements (ed.), Market functioning and central bank policy, volume 12, pages 148-180, Bank for International Settlements.
    8. Alexander Kurov, 2008. "Investor Sentiment, Trading Behavior and Informational Efficiency in Index Futures Markets," The Financial Review, Eastern Finance Association, vol. 43(1), pages 107-127, February.
    9. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    10. Amaya, Diego & Boudreault, Mathieu & McLeish, Don L., 2019. "Maximum likelihood estimation of first-passage structural credit risk models correcting for the survivorship bias," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 297-313.
    11. Li, Minqiang & Pearson, Neil D. & Poteshman, Allen M., 2004. "Conditional estimation of diffusion processes," Journal of Financial Economics, Elsevier, vol. 74(1), pages 31-66, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salm, Christian A. & Schuppli, Michael, 2010. "Positive feedback trading in stock index futures: International evidence," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 313-322, December.
    2. Fotini Economou & Konstantinos Gavriilidis & Bartosz Gebka & Vasileios Kallinterakis, 2022. "Feedback trading: a review of theory and empirical evidence," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 15(4), pages 429-476, February.
    3. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.
    4. Gao, Bin & Liu, Xihua, 2020. "Intraday sentiment and market returns," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 48-62.
    5. Lin, Chu-Bin & Chou, Robin K. & Wang, George H.K., 2018. "Investor sentiment and price discovery: Evidence from the pricing dynamics between the futures and spot markets," Journal of Banking & Finance, Elsevier, vol. 90(C), pages 17-31.
    6. Saade, Samer, 2015. "Investor sentiment and the underperformance of technology firms initial public offerings," Research in International Business and Finance, Elsevier, vol. 34(C), pages 205-232.
    7. Kallinterakis, Vasileios & Liu, Fei & Pantelous, Athanasios A. & Shao, Jia, 2020. "Pricing inefficiencies and feedback trading: Evidence from country ETFs," International Review of Financial Analysis, Elsevier, vol. 70(C).
    8. Chau, Frankie & Deesomsak, Rataporn & Koutmos, Dimitrios, 2016. "Does investor sentiment really matter?," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 221-232.
    9. Chau, Frankie & Deesomsak, Rataporn & Lau, Marco C.K., 2011. "Investor sentiment and feedback trading: Evidence from the exchange-traded fund markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 292-305.
    10. Andrikopoulos, Panagiotis & Cui, Yueting & Gad, Samar & Kallinterakis, Vasileios, 2020. "Feedback trading and the ramadan effect in frontier markets," Research in International Business and Finance, Elsevier, vol. 51(C).
    11. Junmao Chiu & Huimin Chung & Keng-Yu Ho, 2014. "Fear Sentiment, Liquidity, and Trading Behavior: Evidence from the Index ETF Market," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 1-25.
    12. Schuppli, Michael & Bohl, Martin T., 2010. "Do foreign institutional investors destabilize China's A-share markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(1), pages 36-50, February.
    13. Yu, Jianfeng & Yuan, Yu, 2011. "Investor sentiment and the mean-variance relation," Journal of Financial Economics, Elsevier, vol. 100(2), pages 367-381, May.
    14. Gric, Zuzana & Bajzík, Josef & Badura, Ondřej, 2023. "Does sentiment affect stock returns? A meta-analysis across survey-based measures," International Review of Financial Analysis, Elsevier, vol. 89(C).
    15. Warren Dean & Robert Faff, 2011. "Feedback trading and the behavioural ICAPM: multivariate evidence across international equity and bond markets," Applied Financial Economics, Taylor & Francis Journals, vol. 21(22), pages 1665-1678.
    16. Michael Schuppli & Martin T. Bohl, 2009. "Do Foreign Institutional Investors Destabilize China’s A-Share Markets?," CQE Working Papers 0909, Center for Quantitative Economics (CQE), University of Muenster.
    17. Wen-I Chuang & Bong-Soo Lee & Kai-Li Wang, 2014. "US and Domestic Market Gains and Asian Investors’ Overconfident Trading Behavior," Financial Management, Financial Management Association International, vol. 43(1), pages 113-148, March.
    18. Ni, Yensen & Cheng, Yirung & Huang, Paoyu & Day, Min-Yuh, 2018. "Trading strategies in terms of continuous rising (falling) prices or continuous bullish (bearish) candlesticks emitted," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 188-204.
    19. Charteris, Ailie & Musadziruma, Arnold, 2017. "Feedback trading in stock index futures: Evidence from South Africa," Research in International Business and Finance, Elsevier, vol. 42(C), pages 1289-1297.
    20. Rakovská, Zuzana, 2021. "Composite survey sentiment as a predictor of future market returns: Evidence for German equity indices," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 473-495.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.12564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.