IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.06133.html
   My bibliography  Save this paper

Hotel Preference Rank based on Online Customer Review

Author

Listed:
  • Muhammad Apriandito Arya Saputra
  • Andry Alamsyah
  • Fajar Ibnu Fatihan

Abstract

Topline hotels are now shifting into the digital way in how they understand their customers to maintain and ensuring satisfaction. Rather than the conventional way which uses written reviews or interviews, the hotel is now heavily investing in Artificial Intelligence particularly Machine Learning solutions. Analysis of online customer reviews changes the way companies make decisions in a more effective way than using conventional analysis. The purpose of this research is to measure hotel service quality. The proposed approach emphasizes service quality dimensions reviews of the top-5 luxury hotel in Indonesia that appear on the online travel site TripAdvisor based on section Best of 2018. In this research, we use a model based on a simple Bayesian classifier to classify each customer review into one of the service quality dimensions. Our model was able to separate each classification properly by accuracy, kappa, recall, precision, and F-measure measurements. To uncover latent topics in the customer's opinion we use Topic Modeling. We found that the common issue that occurs is about responsiveness as it got the lowest percentage compared to others. Our research provides a faster outlook of hotel rank based on service quality to end customers based on a summary of the previous online review.

Suggested Citation

  • Muhammad Apriandito Arya Saputra & Andry Alamsyah & Fajar Ibnu Fatihan, 2021. "Hotel Preference Rank based on Online Customer Review," Papers 2110.06133, arXiv.org.
  • Handle: RePEc:arx:papers:2110.06133
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.06133
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.06133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.