IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.02492.html
   My bibliography  Save this paper

Value-at-Risk forecasting model based on normal inverse Gaussian distribution driven by dynamic conditional score

Author

Listed:
  • Shijia Song
  • Handong Li

Abstract

Under the framework of dynamic conditional score, we propose a parametric forecasting model for Value-at-Risk based on the normal inverse Gaussian distribution (Hereinafter NIG-DCS-VaR), which creatively incorporates intraday information into daily VaR forecast. NIG specifies an appropriate distribution to return and the semi-additivity of the NIG parameters makes it feasible to improve the estimation of daily return in light of intraday return, and thus the VaR can be explicitly obtained by calculating the quantile of the re-estimated distribution of daily return. We conducted an empirical analysis using two main indexes of the Chinese stock market, and a variety of backtesting approaches as well as the model confidence set approach prove that the VaR forecasts of NIG-DCS model generally gain an advantage over those of realized GARCH (RGARCH) models. Especially when the risk level is relatively high, NIG-DCS-VaR beats RGARCH-VaR in terms of coverage ability and independence.

Suggested Citation

  • Shijia Song & Handong Li, 2021. "Value-at-Risk forecasting model based on normal inverse Gaussian distribution driven by dynamic conditional score," Papers 2110.02492, arXiv.org.
  • Handle: RePEc:arx:papers:2110.02492
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.02492
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.02492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.