IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.07211.html
   My bibliography  Save this paper

Risk Measurement, Risk Entropy, and Autonomous Driving Risk Modeling

Author

Listed:
  • Jiamin Yu

Abstract

It has been for a long time to use big data of autonomous vehicles for perception, prediction, planning, and control of driving. Naturally, it is increasingly questioned why not using this big data for risk management and actuarial modeling. This article examines the emerging technical difficulties, new ideas, and methods of risk modeling under autonomous driving scenarios. Compared with the traditional risk model, the novel model is more consistent with the real road traffic and driving safety performance. More importantly, it provides technical feasibility for realizing risk assessment and car insurance pricing under a computer simulation environment.

Suggested Citation

  • Jiamin Yu, 2021. "Risk Measurement, Risk Entropy, and Autonomous Driving Risk Modeling," Papers 2109.07211, arXiv.org.
  • Handle: RePEc:arx:papers:2109.07211
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.07211
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiamin Yu, 2022. "Will claim history become a deprecated rating factor? An optimal design method for the real-time road risk model," Papers 2204.11585, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.07211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.