IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2108.05721.html
   My bibliography  Save this paper

Networks of News and Cross-Sectional Returns

Author

Listed:
  • Junjie Hu
  • Wolfgang Karl Hardle

Abstract

We uncover networks from news articles to study cross-sectional stock returns. By analyzing a huge dataset of more than 1 million news articles collected from the internet, we construct time-varying directed networks of the S&P500 stocks. The well-defined directed news networks are formed based on a modest assumption about firm-specific news structure, and we propose an algorithm to tackle type-I errors in identifying the stock tickers. We find strong evidence for the comovement effect between the news-linked stocks returns and reversal effect from the lead stock return on the 1-day ahead follower stock return, after controlling for many known effects. Furthermore, a series of portfolio tests reveal that the news network attention proxy, network degree, provides a robust and significant cross-sectional predictability of the monthly stock returns. Among different types of news linkages, the linkages of within-sector stocks, large size lead firms, and lead firms with lower stock liquidity are crucial for cross-sectional predictability.

Suggested Citation

  • Junjie Hu & Wolfgang Karl Hardle, 2021. "Networks of News and Cross-Sectional Returns," Papers 2108.05721, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:2108.05721
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2108.05721
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Jingjing, 2024. "Stealing the show: The negative effects of media coverage on peers’ stock liquidity," Finance Research Letters, Elsevier, vol. 59(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.05721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.