IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.07329.html
   My bibliography  Save this paper

Dynamic Spatial Matching

Author

Listed:
  • Yash Kanoria

Abstract

Motivated by a variety of online matching platforms, we consider demand and supply units which are located i.i.d. in [0,1]^d, and each demand unit needs to be matched with a supply unit. The goal is to minimize the expected average distance between matched pairs (the "cost"). We model dynamic arrivals of one or both of demand and supply with uncertain locations of future arrivals, and characterize the scaling behavior of the achievable cost in terms of system size (number of supply units), as a function of the dimension d. Our achievability results are backed by concrete matching algorithms. Across cases, we find that the platform can achieve cost (nearly) as low as that achievable if the locations of future arrivals had been known beforehand. Furthermore, in all cases except one, cost nearly as low in terms of scaling as the expected distance to the nearest neighboring supply unit is achievable, i.e., the matching constraint does not cause an increase in cost either. The aberrant case is where only demand arrivals are dynamic, and d=1; excess supply significantly reduces cost in this case.

Suggested Citation

  • Yash Kanoria, 2021. "Dynamic Spatial Matching," Papers 2105.07329, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2105.07329
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.07329
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Akbarpour & Yeganeh Alimohammadi & Shengwu Li & Amin Saberi, 2021. "The Value of Excess Supply in Spatial Matching Markets," Papers 2104.03219, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.07329. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.