IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2012.12346.html
   My bibliography  Save this paper

A machine learning solver for high-dimensional integrals: Solving Kolmogorov PDEs by stochastic weighted minimization and stochastic gradient descent through a high-order weak approximation scheme of SDEs with Malliavin weights

Author

Listed:
  • Riu Naito
  • Toshihiro Yamada

Abstract

The paper introduces a very simple and fast computation method for high-dimensional integrals to solve high-dimensional Kolmogorov partial differential equations (PDEs). The new machine learning-based method is obtained by solving a stochastic weighted minimization with stochastic gradient descent which is inspired by a high-order weak approximation scheme for stochastic differential equations (SDEs) with Malliavin weights. Then solutions to high-dimensional Kolmogorov PDEs or expectations of functionals of solutions to high-dimensional SDEs are accurately approximated without suffering from the curse of dimensionality. Numerical examples for PDEs and SDEs up to 100 dimensions are shown by using second and third-order discretization schemes in order to demonstrate the effectiveness of our method.

Suggested Citation

  • Riu Naito & Toshihiro Yamada, 2020. "A machine learning solver for high-dimensional integrals: Solving Kolmogorov PDEs by stochastic weighted minimization and stochastic gradient descent through a high-order weak approximation scheme of ," Papers 2012.12346, arXiv.org, revised Feb 2021.
  • Handle: RePEc:arx:papers:2012.12346
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2012.12346
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.12346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.