IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2012.11342.html
   My bibliography  Save this paper

A Nearly Similar Powerful Test for Mediation

Author

Listed:
  • Kees Jan van Garderen
  • Noud van Giersbergen

Abstract

This paper derives a new powerful test for mediation that is easy to use. Testing for mediation is empirically very important in psychology, sociology, medicine, economics and business, generating over 100,000 citations to a single key paper. The no-mediation hypothesis $H_{0}:\theta_{1}\theta _{2}=0$ also poses a theoretically interesting statistical problem since it defines a manifold that is non-regular in the origin where rejection probabilities of standard tests are extremely low. We prove that a similar test for mediation only exists if the size is the reciprocal of an integer. It is unique, but has objectionable properties. We propose a new test that is nearly similar with power close to the envelope without these abject properties and is easy to use in practice. Construction uses the general varying $g$-method that we propose. We illustrate the results in an educational setting with gender role beliefs and in a trade union sentiment application.

Suggested Citation

  • Kees Jan van Garderen & Noud van Giersbergen, 2020. "A Nearly Similar Powerful Test for Mediation," Papers 2012.11342, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:2012.11342
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2012.11342
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Graham Elliott & Ulrich K. Müller & Mark W. Watson, 2015. "Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis," Econometrica, Econometric Society, vol. 83, pages 771-811, March.
    2. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    3. van Garderen, Kees Jan, 1997. "Curved Exponential Models in Econometrics," Econometric Theory, Cambridge University Press, vol. 13(6), pages 771-790, December.
    4. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    5. Noud P.A. van Giersbergen, 2014. "Inference about the Indirect Effect: a Likelihood Approach," UvA-Econometrics Working Papers 14-10, Universiteit van Amsterdam, Dept. of Econometrics.
    6. Moreira, Marcelo J. & Mourão, Rafael & Moreira, Humberto Ataíde, 2016. "A critical value function approach, with an application to persistent time-series," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 778, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    7. Donald W.K. Andrews, 2011. "Similar-on-the-Boundary Tests for Moment Inequalities Exist, But Have Poor Power," Cowles Foundation Discussion Papers 1815, Cowles Foundation for Research in Economics, Yale University.
    8. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis, 2019. "A more powerful subvector Anderson Rubin test in linear instrumental variables regression," Quantitative Economics, Econometric Society, vol. 10(2), pages 487-526, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Werker, Bas J.M. & Zhou, B., 2022. "Semiparametric testing with highly persistent predictors," Other publications TiSEM 2974ce9c-97c1-44cd-9331-0, Tilburg University, School of Economics and Management.
    2. Xu Cheng & Winston Wei Dou & Zhipeng Liao, 2022. "Macro‐Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models," Econometrica, Econometric Society, vol. 90(2), pages 685-713, March.
    3. Kleibergen, Frank, 2021. "Efficient size correct subset inference in homoskedastic linear instrumental variables regression," Journal of Econometrics, Elsevier, vol. 221(1), pages 78-96.
    4. Werker, Bas J.M. & Zhou, Bo, 2022. "Semiparametric testing with highly persistent predictors," Journal of Econometrics, Elsevier, vol. 227(2), pages 347-370.
    5. Bas Werker & Bo Zhou, 2020. "Semiparametric Testing with Highly Persistent Predictors," Papers 2009.08291, arXiv.org.
    6. Elliott, Graham, 2020. "Testing for a trend with persistent errors," Journal of Econometrics, Elsevier, vol. 219(2), pages 314-328.
    7. Abhimanyu Gupta & Myung Hwan Seo, 2023. "Robust Inference on Infinite and Growing Dimensional Time‐Series Regression," Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
    8. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    9. Donald W. K. Andrews & Patrik Guggenberger, 2015. "Identification- and Singularity-Robust Inference for Moment Condition," Cowles Foundation Discussion Papers 1978R2, Cowles Foundation for Research in Economics, Yale University, revised Jan 2019.
    10. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    11. Andersen, Torben G. & Varneskov, Rasmus T., 2022. "Testing for parameter instability and structural change in persistent predictive regressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
    12. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    13. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    14. Hiroaki Kaido & Yi Zhang, 2019. "Robust Likelihood Ratio Tests for Incomplete Economic Models," Papers 1910.04610, arXiv.org, revised Dec 2019.
    15. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis, 2021. "A Powerful Subvector Anderson Rubin Test in Linear Instrumental Variables Regression with Conditional Heteroskedasticity," Papers 2103.11371, arXiv.org, revised Oct 2022.
    16. Moreira, Humberto & Moreira, Marcelo J., 2019. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," Journal of Econometrics, Elsevier, vol. 213(2), pages 398-433.
    17. Leandro M. Magnusson & Sophocles Mavroeidis, 2014. "Identification Using Stability Restrictions," Econometrica, Econometric Society, vol. 82(5), pages 1799-1851, September.
    18. Frank Kleibergen & Zhaoguo Zhan, 2021. "Double robust inference for continuous updating GMM," Papers 2105.08345, arXiv.org.
    19. Bun, Maurice J.G. & Kleibergen, Frank, 2022. "Identification Robust Inference For Moments-Based Analysis Of Linear Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 38(4), pages 689-751, August.
    20. Xu Cheng, 2014. "Uniform Inference in Nonlinear Models with Mixed Identification Strength," PIER Working Paper Archive 14-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.11342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.