IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.03580.html
   My bibliography  Save this paper

Propagation of minimality in the supercooled Stefan problem

Author

Listed:
  • Christa Cuchiero
  • Stefan Rigger
  • Sara Svaluto-Ferro

Abstract

Supercooled Stefan problems describe the evolution of the boundary between the solid and liquid phases of a substance, where the liquid is assumed to be cooled below its freezing point. Following the methodology of Delarue, Nadtochiy and Shkolnikov, we construct solutions to the one-phase one-dimensional supercooled Stefan problem through a certain McKean-Vlasov equation, which allows to define global solutions even in the presence of blow-ups. Solutions to the McKean-Vlasov equation arise as mean-field limits of particle systems interacting through hitting times, which is important for systemic risk modeling. Our main contributions are: (i) we prove a general tightness theorem for the Skorokhod M1-topology which applies to processes that can be decomposed into a continuous and a monotone part. (ii) We prove propagation of chaos for a perturbed version of the particle system for general initial conditions. (iii) We prove a conjecture of Delarue, Nadtochiy and Shkolnikov, relating the solution concepts of so-called minimal and physical solutions, showing that minimal solutions of the McKean-Vlasov equation are physical whenever the initial condition is integrable.

Suggested Citation

  • Christa Cuchiero & Stefan Rigger & Sara Svaluto-Ferro, 2020. "Propagation of minimality in the supercooled Stefan problem," Papers 2010.03580, arXiv.org, revised Jun 2022.
  • Handle: RePEc:arx:papers:2010.03580
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.03580
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben Hambly & Andreas Søjmark, 2019. "An SPDE model for systemic risk with endogenous contagion," Finance and Stochastics, Springer, vol. 23(3), pages 535-594, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary Feinstein & Andreas Sojmark, 2021. "Contagious McKean-Vlasov systems with heterogeneous impact and exposure," Papers 2104.06776, arXiv.org, revised Sep 2022.
    2. Erhan Bayraktar & Gaoyue Guo & Wenpin Tang & Yuming Zhang, 2020. "McKean-Vlasov equations involving hitting times: blow-ups and global solvability," Papers 2010.14646, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burzoni, Matteo & Campi, Luciano, 2023. "Mean field games with absorption and common noise with a model of bank run," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 206-241.
    2. Zachary Feinstein & Andreas Søjmark, 2023. "Contagious McKean–Vlasov systems with heterogeneous impact and exposure," Finance and Stochastics, Springer, vol. 27(3), pages 663-711, July.
    3. Zachary Feinstein & Andreas Sojmark, 2020. "Dynamic Default Contagion in Heterogeneous Interbank Systems," Papers 2010.15254, arXiv.org, revised Jul 2021.
    4. Mao Fabrice Djete & Gaoyue Guo & Nizar Touzi, 2023. "Mean field game of mutual holding with defaultable agents, and systemic risk," Papers 2303.07996, arXiv.org.
    5. Zachary Feinstein & Andreas Sojmark, 2021. "Contagious McKean-Vlasov systems with heterogeneous impact and exposure," Papers 2104.06776, arXiv.org, revised Sep 2022.
    6. Feinstein, Zachary & Sojmark, Andreas, 2023. "Contagious McKean–Vlasov systems with heterogeneous impact and exposure," LSE Research Online Documents on Economics 119457, London School of Economics and Political Science, LSE Library.
    7. Qiu, Ming & Jin, Zhuo & Li, Shuanming, 2023. "Optimal risk sharing and dividend strategies under default contagion: A semi-analytical approach," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 1-23.
    8. Feinstein, Zachary & Sojmark, Andreas, 2021. "Short communication: dynamic default contagion in heterogeneous interbank systems," LSE Research Online Documents on Economics 123789, London School of Economics and Political Science, LSE Library.
    9. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.03580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.