IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.08794.html
   My bibliography  Save this paper

Simplicial persistence of financial markets: filtering, generative processes and portfolio risk

Author

Listed:
  • Jeremy D. Turiel
  • Paolo Barucca
  • Tomaso Aste

Abstract

We introduce simplicial persistence, a measure of time evolution of network motifs in subsequent temporal layers. We observe long memory in the evolution of structures from correlation filtering, with a two regime power law decay in the number of persistent simplicial complexes. Null models of the underlying time series are tested to investigate properties of the generative process and its evolutional constraints. Networks are generated with both TMFG filtering technique and thresholding showing that embedding-based filtering methods (TMFG) are able to identify higher order structures throughout the market sample, where thresholding methods fail. The decay exponents of these long memory processes are used to characterise financial markets based on their stage of development and liquidity. We find that more liquid markets tend to have a slower persistence decay. This is in contrast with the common understanding that developed markets are more random. We find that they are indeed less predictable for what concerns the dynamics of each single variable but they are more predictable for what concerns the collective evolution of the variables. This could imply higher fragility to systemic shocks.

Suggested Citation

  • Jeremy D. Turiel & Paolo Barucca & Tomaso Aste, 2020. "Simplicial persistence of financial markets: filtering, generative processes and portfolio risk," Papers 2009.08794, arXiv.org.
  • Handle: RePEc:arx:papers:2009.08794
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.08794
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanrong Wang & Tomaso Aste, 2022. "Sparsification and Filtering for Spatial-temporal GNN in Multivariate Time-series," Papers 2203.03991, arXiv.org.
    2. Isobel Seabrook & Fabio Caccioli & Tomaso Aste, 2021. "An Information Filtering approach to stress testing: an application to FTSE markets," Papers 2106.08778, arXiv.org.
    3. Antonio Briola & Tomaso Aste, 2022. "Dependency structures in cryptocurrency market from high to low frequency," Papers 2206.03386, arXiv.org, revised Dec 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.08794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.