Detecting and adapting to crisis pattern with context based Deep Reinforcement Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Stephen A. Ross, 2013.
"The Arbitrage Theory of Capital Asset Pricing,"
World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30,
World Scientific Publishing Co. Pte. Ltd..
- Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
- Stephen A. Ross, "undated". "The Arbitrage Theory of Capital Asset Pricing," Rodney L. White Center for Financial Research Working Papers 02-73, Wharton School Rodney L. White Center for Financial Research.
- Stephen A. Ross, "undated". "The Arbitrage Theory of Capital Asset Pricing," Rodney L. White Center for Financial Research Working Papers 2-73, Wharton School Rodney L. White Center for Financial Research.
- Wu, Guojun, 2001. "The Determinants of Asymmetric Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 837-859.
- Dion Harmon & Blake Stacey & Yavni Bar-Yam & Yaneer Bar-Yam, 2010. "Networks of Economic Market Interdependence and Systemic Risk," Papers 1011.3707, arXiv.org, revised Nov 2010.
- David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
- Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay & Jamal Atif, 2020. "AAMDRL: Augmented Asset Management with Deep Reinforcement Learning," Papers 2010.08497, arXiv.org.
- Jungyu Ahn & Sungwoo Park & Jiwoon Kim & Ju-hong Lee, 2022. "Reinforcement Learning Portfolio Manager Framework with Monte Carlo Simulation," Papers 2207.02458, arXiv.org.
- Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Time your hedge with Deep Reinforcement Learning," Papers 2009.14136, arXiv.org, revised Nov 2020.
- Ricard Durall, 2022. "Asset Allocation: From Markowitz to Deep Reinforcement Learning," Papers 2208.07158, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dion Harmon & Marco Lagi & Marcus A M de Aguiar & David D Chinellato & Dan Braha & Irving R Epstein & Yaneer Bar-Yam, 2015. "Anticipating Economic Market Crises Using Measures of Collective Panic," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
- Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay & Jamal Atif, 2020. "AAMDRL: Augmented Asset Management with Deep Reinforcement Learning," Papers 2010.08497, arXiv.org.
- Jeonggyu Huh, 2018. "Measuring Systematic Risk with Neural Network Factor Model," Papers 1809.04925, arXiv.org.
- Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
- Wenbo Wu & Jiaqi Chen & Zhibin (Ben) Yang & Michael L. Tindall, 2021. "A Cross-Sectional Machine Learning Approach for Hedge Fund Return Prediction and Selection," Management Science, INFORMS, vol. 67(7), pages 4577-4601, July.
- Mai, Van Anh (Vivian) & Ang, Tze Chuan ‘Chewie’ & Fang, Victor, 2016. "Aggregate volatility risk and the cross-section of stock returns: Australian evidence," Pacific-Basin Finance Journal, Elsevier, vol. 36(C), pages 134-149.
- Huh, Jeonggyu, 2020. "Measuring systematic risk with neural network factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Tobias Adrian & Erkko Etula, 2010. "Funding liquidity risk and the cross-section of stock returns," Staff Reports 464, Federal Reserve Bank of New York.
- Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
- Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & Franc{c}ois Chareyron, 2021. "Adaptive learning for financial markets mixing model-based and model-free RL for volatility targeting," Papers 2104.10483, arXiv.org, revised Apr 2021.
- Kumar Yashaswi, 2021. "Deep Reinforcement Learning for Portfolio Optimization using Latent Feature State Space (LFSS) Module," Papers 2102.06233, arXiv.org.
- Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Time your hedge with Deep Reinforcement Learning," Papers 2009.14136, arXiv.org, revised Nov 2020.
- Cheng, Haoxin & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2023. "A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Gang Huang & Xiaohua Zhou & Qingyang Song, 2020. "Deep reinforcement learning for portfolio management," Papers 2012.13773, arXiv.org, revised Apr 2022.
- Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
- Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
- Bonhomme, Stphane & Robin, Jean-Marc, 2009.
"Consistent noisy independent component analysis,"
Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
- Stéphane Bonhomme & Jean-Marc Robin, 2008. "Consistent noisy independent component analysis," CeMMAP working papers CWP04/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Stéphane Bonhomme & Jean-Marc Robin, 2009. "Consistent Noisy Independent Component Analysis," PSE-Ecole d'économie de Paris (Postprint) hal-00642732, HAL.
- Jean-Marc Robin & Stéphane Bonhomme, 2009. "Consistent Noisy Independent Component Analysis," SciencePo Working papers Main hal-01022621, HAL.
- Stéphane Bonhomme & Jean-Marc Robin, 2009. "Consistent Noisy Independent Component Analysis," Post-Print hal-00642732, HAL.
- Jean-Marc Robin & Stéphane Bonhomme, 2009. "Consistent Noisy Independent Component Analysis," Post-Print hal-01022621, HAL.
- Stéphane Bonhomme & Jean-Marc Robin, 2009. "Consistent Noisy Independent Component Analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00642732, HAL.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-09-21 (Big Data)
- NEP-CMP-2020-09-21 (Computational Economics)
- NEP-RMG-2020-09-21 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.07200. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.