IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.05360.html
   My bibliography  Save this paper

Inferring hidden potentials in analytical regions: uncovering crime suspect communities in Medell\'in

Author

Listed:
  • Alejandro Puerta
  • Andr'es Ram'irez-Hassan

Abstract

This paper proposes a Bayesian approach to perform inference regarding the size of hidden populations at analytical region using reported statistics. To do so, we propose a specification taking into account one-sided error components and spatial effects within a panel data structure. Our simulation exercises suggest good finite sample performance. We analyze rates of crime suspects living per neighborhood in Medell\'in (Colombia) associated with four crime activities. Our proposal seems to identify hot spots or "crime communities", potential neighborhoods where under-reporting is more severe, and also drivers of crime schools. Statistical evidence suggests a high level of interaction between homicides and drug dealing in one hand, and motorcycle and car thefts on the other hand.

Suggested Citation

  • Alejandro Puerta & Andr'es Ram'irez-Hassan, 2020. "Inferring hidden potentials in analytical regions: uncovering crime suspect communities in Medell\'in," Papers 2009.05360, arXiv.org.
  • Handle: RePEc:arx:papers:2009.05360
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.05360
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viliam Druska & William C. Horrace, 2004. "Generalized Moments Estimation for Spatial Panel Data: Indonesian Rice Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 185-198.
    2. Efthymios G. Tsionas & Subal C. Kumbhakar, 2014. "FIRM HETEROGENEITY, PERSISTENT AND TRANSIENT TECHNICAL INEFFICIENCY: A GENERALIZED TRUE RANDOM‐EFFECTS model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 110-132, January.
    3. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    4. Viliam Druska & William C. Horrace, 2003. "Generalized Moments Estimation for Panel Data," NBER Technical Working Papers 0291, National Bureau of Economic Research, Inc.
    5. Alberto Gude & Inmaculada Álvarez & Luis Orea, 2018. "Heterogeneous spillovers among Spanish provinces: a generalized spatial stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 50(3), pages 155-173, December.
    6. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C., 2016. "A spatial autoregressive stochastic frontier model for panel data with asymmetric efficiency spillovers," Journal of Econometrics, Elsevier, vol. 190(2), pages 289-300.
    7. Ashley N. Arnio & Eric P. Baumer, 2012. "Demography, foreclosure, and crime:," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(18), pages 449-488.
    8. Waldman, Donald M., 1982. "A stationary point for the stochastic frontier likelihood," Journal of Econometrics, Elsevier, vol. 18(2), pages 275-279, February.
    9. François Bourguignon & Jairo Nuñez & Fabio Sanchez, 2003. "A Structural Model of Crime and Inequality in Colombia," Journal of the European Economic Association, MIT Press, vol. 1(2-3), pages 440-449, 04/05.
    10. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    11. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    12. Juan C. Duque & Luc Anselin & Sergio J. Rey, 2012. "The Max-P-Regions Problem," Journal of Regional Science, Wiley Blackwell, vol. 52(3), pages 397-419, August.
    13. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    14. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    15. Camilla Mastromarco & Laura Serlenga & Yongcheol Shin, 2016. "Modelling Technical Efficiency in Cross Sectionally Dependent Stochastic Frontier Panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 281-297, January.
    16. Kakamu, Kazuhiko & Polasek, Wolfgang & Wago, Hajime, 2008. "Spatial interaction of crime incidents in Japan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 276-282.
    17. Efthymios G. Tsionas & Panayotis G. Michaelides, 2016. "A Spatial Stochastic Frontier Model with Spillovers: Evidence for Italian Regions," Scottish Journal of Political Economy, Scottish Economic Society, vol. 63(3), pages 243-257, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    2. Fei Jin & Lung-fei Lee, 2020. "Asymptotic properties of a spatial autoregressive stochastic frontier model," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-40, December.
    3. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    4. Kassoum Ayouba, 2023. "Spatial dependence in production frontier models," Journal of Productivity Analysis, Springer, vol. 60(1), pages 21-36, August.
    5. Orea, Luis & Álvarez, Inmaculada C., 2019. "A new stochastic frontier model with cross-sectional effects in both noise and inefficiency terms," Journal of Econometrics, Elsevier, vol. 213(2), pages 556-577.
    6. Adjin, K. Christophe & Henning, Christian H. C. A., 2020. "Climate variability and farm inefficiency: A spatial stochastic frontier analysis of Senegalese agriculture," Working Papers of Agricultural Policy WP2020-09, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    7. Vidoli, Francesco & Cardillo, Concetta & Fusco, Elisa & Canello, Jacopo, 2016. "Spatial nonstationarity in the stochastic frontier model: An application to the Italian wine industry," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 153-164.
    8. Elisa Fusco & Giuseppe Arbia & Francesco Vidoli & Vincenzo Nardelli, 2024. "On Spatio-Temporal Stochastic Frontier Models," Econometrics Working Papers Archive 2024_09, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    9. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    10. Alberto Gude & Inmaculada Álvarez & Luis Orea, 2018. "Heterogeneous spillovers among Spanish provinces: a generalized spatial stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 50(3), pages 155-173, December.
    11. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    12. Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.
    13. Glass, Anthony J. & Kenjegalieva, Karligash, 2019. "A spatial productivity index in the presence of efficiency spillovers: Evidence for U.S. banks, 1992–2015," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1165-1179.
    14. Thomas Graaff, 2020. "On the estimation of spatial stochastic frontier models: an alternative skew-normal approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 267-285, April.
    15. Kien C. Tran & Mike G. Tsionas, 2023. "Semiparametric estimation of a spatial autoregressive nonparametric stochastic frontier model," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-28, December.
    16. Bao Hoang Nguyen & Zhichao Wang & Valentin Zelenyuk, 2023. "Efficiency of Queensland Public Hospitals via Spatial Panel Stochastic Frontier Models," CEPA Working Papers Series WP102023, School of Economics, University of Queensland, Australia.
    17. Glass, Anthony J. & Kenjegalieva, Karligash & Douch, Mustapha, 2020. "Uncovering spatial productivity centers using asymmetric bidirectional spillovers," European Journal of Operational Research, Elsevier, vol. 285(2), pages 767-788.
    18. Camilla Mastromarco & Laura Serlenga & Yongcheol Shin, 2023. "Regional Productivity Network in the EU," CESifo Working Paper Series 10404, CESifo.
    19. Jacopo Canello & Francesco Vidoli, 2020. "Investigating space‐time patterns of regional industrial resilience through a micro‐level approach: An application to the Italian wine industry," Journal of Regional Science, Wiley Blackwell, vol. 60(4), pages 653-676, September.
    20. Orea, Luis & Álvarez, Inmaculada C., 2019. "Spatial Production Economics," Efficiency Series Papers 2019/06, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.05360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.