IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.11558.html
   My bibliography  Save this paper

Investigation of Flash Crash via Topological Data Analysis

Author

Listed:
  • Wonse Kim
  • Younng-Jin Kim
  • Gihyun Lee
  • Woong Kook

Abstract

Topological data analysis has been acknowledged as one of the most successful mathematical data analytic methodologies in various fields including medicine, genetics, and image analysis. In this paper, we explore the potential of this methodology in finance by applying persistence landscape and dynamic time series analysis to analyze an extreme event in the stock market, known as Flash Crash. We will provide results of our empirical investigation to confirm the effectiveness of our new method not only for the characterization of this extreme event but also for its prediction purposes.

Suggested Citation

  • Wonse Kim & Younng-Jin Kim & Gihyun Lee & Woong Kook, 2020. "Investigation of Flash Crash via Topological Data Analysis," Papers 2008.11558, arXiv.org.
  • Handle: RePEc:arx:papers:2008.11558
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.11558
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellia, Mario & Christensen, Kim & Kolokolov, Aleksey & Pelizzon, Loriana & Renò, Roberto, 2022. "Do designated market makers provide liquidity during a flash crash?," SAFE Working Paper Series 270, Leibniz Institute for Financial Research SAFE, revised 2022.
    2. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    3. Joseph, Andreas & Vasios, Michalis, 2022. "OTC Microstructure in a period of stress: A Multi-layered network approach," Journal of Banking & Finance, Elsevier, vol. 138(C).
    4. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    5. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    6. Ya‐Kai Chang & Robin K. Chou, 2022. "Algorithmic trading and market quality: Evidence from the Taiwan index futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1837-1855, October.
    7. Breckenfelder, Johannes, 2024. "Competition among high-frequency traders and market quality," Journal of Economic Dynamics and Control, Elsevier, vol. 166(C).
    8. Kei Nakagawa & Masanori Hirano & Kentaro Minami & Takanobu Mizuta, 2024. "A Multi-agent Market Model Can Explain the Impact of AI Traders in Financial Markets -- A New Microfoundations of GARCH model," Papers 2409.12516, arXiv.org.
    9. Jin, Miao & Liu, Yu-Jane & Meng, Juanjuan, 2019. "Fat-finger event and risk-taking behavior," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 126-143.
    10. Gunther Capelle-Blancard, 2018. "What is the Point of (the Hundreds of Thousands of Billions of) Stock Transactions?," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 60(1), pages 15-33, March.
    11. Maarten P. Scholl & Anisoara Calinescu & J. Doyne Farmer, 2021. "How market ecology explains market malfunction," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(26), pages 2015574118-, June.
    12. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2018. "The effect of fast trading on price discovery and efficiency: Evidence from a betting exchange," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 126-143.
    13. Xintong Wang & Christopher Hoang & Yevgeniy Vorobeychik & Michael P. Wellman, 2021. "Spoofing the Limit Order Book: A Strategic Agent-Based Analysis," Games, MDPI, vol. 12(2), pages 1-43, May.
    14. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    15. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    16. Corbet, Shaen & Larkin, Charles & Lucey, Brian, 2020. "The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies," Finance Research Letters, Elsevier, vol. 35(C).
    17. Bellia, Mario & Pelizzon, Loriana & Subrahmanyam, Marti & Uno, Jun & Yuferova, Darya, 2017. "Coming early to the party," SAFE Working Paper Series 182, Leibniz Institute for Financial Research SAFE.
      • Mario Bellia & Loriana Pelizzon & Marti G. Subrahmanyam & Jun Uno & Darya Yuferova, 2020. "Coming early to the party," Working Papers 2020:11, Department of Economics, University of Venice "Ca' Foscari".
    18. Daniel Fricke & Austin Gerig, 2018. "Too fast or too slow? Determining the optimal speed of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 519-532, April.
    19. Hatch, Brian C. & Johnson, Shane A. & Wang, Qin Emma & Zhang, Jun, 2021. "Algorithmic trading and firm value," Journal of Banking & Finance, Elsevier, vol. 125(C).
    20. Mark Marner-Hausen, 2022. "Developing a Framework for Real-Time Trading in a Laboratory Financial Market," ECONtribute Discussion Papers Series 172, University of Bonn and University of Cologne, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.11558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.