IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.10666.html
   My bibliography  Save this paper

On the equivalence between the Kinetic Ising Model and discrete autoregressive processes

Author

Listed:
  • Carlo Campajola
  • Fabrizio Lillo
  • Piero Mazzarisi
  • Daniele Tantari

Abstract

Binary random variables are the building blocks used to describe a large variety of systems, from magnetic spins to financial time series and neuron activity. In Statistical Physics the Kinetic Ising Model has been introduced to describe the dynamics of the magnetic moments of a spin lattice, while in time series analysis discrete autoregressive processes have been designed to capture the multivariate dependence structure across binary time series. In this article we provide a rigorous proof of the equivalence between the two models in the range of a unique and invertible map unambiguously linking one model parameters set to the other. Our result finds further justification acknowledging that both models provide maximum entropy distributions of binary time series with given means, auto-correlations, and lagged cross-correlations of order one. We further show that the equivalence between the two models permits to exploit the inference methods originally developed for one model in the inference of the other.

Suggested Citation

  • Carlo Campajola & Fabrizio Lillo & Piero Mazzarisi & Daniele Tantari, 2020. "On the equivalence between the Kinetic Ising Model and discrete autoregressive processes," Papers 2008.10666, arXiv.org, revised Feb 2021.
  • Handle: RePEc:arx:papers:2008.10666
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.10666
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.10666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.