IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.08669.html
   My bibliography  Save this paper

Portfolio Optimization of 60 Stocks Using Classical and Quantum Algorithms

Author

Listed:
  • Jeffrey Cohen
  • Alex Khan
  • Clark Alexander

Abstract

We continue to investigate the use of quantum computers for building an optimal portfolio out of a universe of 60 U.S. listed, liquid equities. Starting from historical market data, we apply our unique problem formulation on the D-Wave Systems Inc. D-Wave 2000Q (TM) quantum annealing system (hereafter called D-Wave) to find the optimal risk vs return portfolio. We approach this first classically, then using the D-Wave, to select efficient buy and hold portfolios. Our results show that practitioners can use either classical or quantum annealing methods to select attractive portfolios. This builds upon our prior work on optimization of 40 stocks.

Suggested Citation

  • Jeffrey Cohen & Alex Khan & Clark Alexander, 2020. "Portfolio Optimization of 60 Stocks Using Classical and Quantum Algorithms," Papers 2008.08669, arXiv.org.
  • Handle: RePEc:arx:papers:2008.08669
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.08669
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Bouland & Wim van Dam & Hamed Joorati & Iordanis Kerenidis & Anupam Prakash, 2020. "Prospects and challenges of quantum finance," Papers 2011.06492, arXiv.org.
    2. Fred Glover & Gary Kochenberger & Rick Hennig & Yu Du, 2022. "Quantum bridge analytics I: a tutorial on formulating and using QUBO models," Annals of Operations Research, Springer, vol. 314(1), pages 141-183, July.
    3. Frank Phillipson & Harshil Singh Bhatia, 2020. "Portfolio Optimisation Using the D-Wave Quantum Annealer," Papers 2012.01121, arXiv.org.
    4. Francesco Catalano & Laura Nasello & Daniel Guterding, 2024. "Quantum Computing Approach to Realistic ESG-Friendly Stock Portfolios," Risks, MDPI, vol. 12(4), pages 1-20, April.
    5. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    6. Esteban Aguilera & Jins de Jong & Frank Phillipson & Skander Taamallah & Mischa Vos, 2024. "Multi-Objective Portfolio Optimization Using a Quantum Annealer," Mathematics, MDPI, vol. 12(9), pages 1-18, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.08669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.